Do you want to publish a course? Click here

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

54   0   0.0 ( 0 )
 Added by Ivan Novikov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present the first open-source analysis of parton distribution functions (PDFs) of charged pions using xFitter, an open-source QCD fit framework to facilitate PDF extraction and analyses. Our calculations are implemented at next-to-leading order (NLO) using APPLgrids generated by MCFM generator. Using currently available Drell-Yan and photon production data, we find the valence distribution is well constrained; however, the considered data are not sensitive enough to unambiguously determine sea and gluon distributions. Fractions of momentum carried by the valence, sea and gluon components are discussed, and we compare with the results of JAM collaboration and the GRV group.



rate research

Read More

We present the first open-source analysis of fragmentation functions (FFs) of charged pions (entitled IPM-xFitter) computed at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) accuracy in perturbative QCD using the xFitter framework. This study incorporates a comprehensive and up-to-date set of pion production data from single-inclusive annihilation (SIA) processes, as well as the most recent measurements of inclusive cross-sections of single pion by the BELLE collaboration. The determination of pion FFs along with their theoretical uncertainties is performed in the Zero-Mass Variable-Flavor Number Scheme (ZM-VFNS). We also present comparisons of our FFs set with recent fits from the literature. The resulting NLO and NNLO pion FFs provide valuable insights for applications in present and future high-energy analysis of pion final state processes.
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be surprisingly large. We use standard Wilson and non-perturbatively improved clover actions in order to control better the extrapolation to the continuum limit. Moreover, we compute, fully non-perturbatively, the renormalization group invariant matrix element, which allows a comparison with experimental results in a broad range of energy scales. Finally, we discuss the remaining uncertainties, the extrapolation to the chiral limit and the quenched approximation.
We present the first lattice results on isovector unpolarized and longitudinally polarized parton distribution functions (PDFs) at physical pion mass. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken-$x$ dependence of finite-momentum PDFs, called quasi-PDFs, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized nonperturbatively in RI/MOM-scheme. However, the recent renormalized quasi-PDFs suffer from unphysical oscillations that alter the shape of the true distribution as a function of Bjorken-$x$. In this paper, we propose two possible solutions to overcome this problem, and demonstrate the efficacy of the methods on the 2+1+1-flavor lattice data at physical pion mass with lattice spacing 0.09~fm and volume $(5.76mbox{ fm})^3$.
111 - Y. Goto , N. Hayashi , M. Hirai 2000
Polarized parton distribution functions are determined by using world data from the longitudinally polarized deep inelastic scattering experiments. A new parametrization of the parton distribution functions is adopted by taking into account the positivity and the counting rule. From the fit to the asymmetry data A_1, the polarized distribution functions of u and d valence quarks, sea quarks, and gluon are obtained. The results indicate that the quark spin content is DeltaSigma=0.20 and 0.05 in the leading order (LO) and the next-to-leading-order (NLO) MS-bar scheme, respectively. However, if x dependence of the sea-quark distribution is fixed at small x by perturbative QCD and Regge theory, it becomes Delta Sigma=0.24 ~ 0.28 in the NLO. The small-x behavior cannot be uniquely determined by the existing data, which indicates the importance of future experiments. From our analysis, we propose one set of LO distributions and two sets of NLO ones as the longitudinally-polarized parton distribution functions.
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests that this probability, when multiplied by the ratio of the parton distributions at the two scales, should be independent of the parton distribution functions. We call this the PDF property. We examine whether the PDF property actually holds using Pythia and Deductor. We also test a related property for the Deductor shower and discuss the physics behind the results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا