Do you want to publish a course? Click here

Improved Parton Distribution Functions at Physical Pion Mass

85   0   0.0 ( 0 )
 Added by Huey-Wen Lin
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present the first lattice results on isovector unpolarized and longitudinally polarized parton distribution functions (PDFs) at physical pion mass. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken-$x$ dependence of finite-momentum PDFs, called quasi-PDFs, can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized nonperturbatively in RI/MOM-scheme. However, the recent renormalized quasi-PDFs suffer from unphysical oscillations that alter the shape of the true distribution as a function of Bjorken-$x$. In this paper, we propose two possible solutions to overcome this problem, and demonstrate the efficacy of the methods on the 2+1+1-flavor lattice data at physical pion mass with lattice spacing 0.09~fm and volume $(5.76mbox{ fm})^3$.



rate research

Read More

We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distributions using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses.
We present a detailed study of the helicity-dependent and helicity-independent collinear parton distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation is performed employing twisted mass fermions with a physical value of the light quark mass. We give a systematic and in-depth account of the salient features entering in the evaluation of quasi-PDFs and their relation to the light-cone PDFs. In particular, we give details for the computation of the matrix elements, including the study of the various sources of systematic uncertainties, such as excited states contamination. In addition, we discuss the non-perturbative renormalization scheme used here and its systematics, effects of truncating the Fourier transform and different matching prescriptions.
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be surprisingly large. We use standard Wilson and non-perturbatively improved clover actions in order to control better the extrapolation to the continuum limit. Moreover, we compute, fully non-perturbatively, the renormalization group invariant matrix element, which allows a comparison with experimental results in a broad range of energy scales. Finally, we discuss the remaining uncertainties, the extrapolation to the chiral limit and the quenched approximation.
117 - Huey-Wen Lin 2020
We present the first lattice calculation of the nucleon isovector unpolarized generalized parton distribution (GPD) at the physical pion mass using a lattice ensemble with 2+1+1 flavors of highly improved staggered quarks (HISQ) generated by MILC Collaboration, with lattice spacing $aapprox 0.09$~fm and volume $64^3times 96$. We use momentum-smeared sources to improve the signal at nucleon boost momentum $P_z approx 2.2$ GeV, and report results at nonzero momentum transfers in $[0.2,1.0]text{ GeV}^2$. Nonperturbative renormalization in RI/MOM scheme is used to obtain the quasi-distribution before matching to the lightcone GPDs. The three-dimensional distributions $H(x,Q^2)$ and $E(x,Q^2)$ at $xi=0$ are presented, along with the three-dimensional nucleon tomography and impact-parameter--dependent distribution for selected Bjorken $x$ at $mu=3$ GeV in $overline{text{MS}}$ scheme.
We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z in {2.2, 2.6, 3.0}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution with combined statistical and systematic errors is in agreement with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $Delta bar{u}(x)>Delta bar{d}(x)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا