Do you want to publish a course? Click here

Effect of dopant ordering on the stability of ferroelectric hafnia

93   0   0.0 ( 0 )
 Added by Jorge \\'I\\~niguez
 Publication date 2020
  fields Physics
and research's language is English
 Authors Sangita Dutta




Ask ChatGPT about the research

Films of all-important compound hafnia (HfO2) can be prepared in an orthorhombic ferroelectric (FE) state that is ideal for applications, e.g. in memories or negative-capacitance field-effect transistors. The origin of this FE state remains a mystery, though, as none of the proposed mechanisms for its stabilization -- from surface and size effects to formation kinetics -- is fully convincing. Interestingly, it is known that doping HfO2 with various cations favors the occurrence of the FE polymorph; however, existing first-principles works suggest that doping by itself is not sufficient to stabilize the polar phase over the usual non-polar monoclinic ground state. Here we use first-principles methods to reexamine this question. We consider two representative isovalent substitutional dopants, Si and Zr, and study their preferred arrangement within the HfO2 lattice. Our results reveal that small atoms like Si can adopt very stable configurations (forming layers within specific crystallographic planes) in the FE orthorhombic phase of HfO2, but comparatively less so in the non-polar monoclinic one. Further, we find that, at low concentrations, such a dopant ordering yields a FE ground state, the usual paraelectric phase becoming a higher-energy metastable polymorph. We discuss the implications of our findings, which constitute a definite step forward towards understanding ferroelectricity in HfO2.



rate research

Read More

The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO$_3$ on ferroelectric polarization and switching mechanism is investigated by means of density-functional-theory (DFT) based calculations and the Berry phase approach. Our results show that both the titanium Ti$_mathrm{Sr}^{bullet bullet}$ and strontium Sr$_mathrm{Ti}^{}$ antisite defects induce ferroelectric polarization in SrTiO$_3$, with the Ti$_mathrm{Sr}^{bullet bullet}$ defect causing a more pronounced spontaneous polarization and higher activation barriers of polarization reversal than Sr$_mathrm{Ti}^{}$. The presence of oxygen vacancies bound to the antisite defects can either enhance or diminish polarization depending on the configuration of the defect pair, but it always leads to larger activation barriers of polarization switching as compared to the antisite defects with no oxygen vacancies. We also show that the magnitude of spontaneous polarization in SrTiO$_3$ can be tuned by controlling the degree of Sr/Ti nonstroichiometry. Other intrinsic point defects such as Frenkel defect pairs and electron small polarons also contribute to the emergence of ferroelectric polarization in SrTiO$_{3}$.
A series of superlattices composed of ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) and ferroelectric/paraelectric Ba$_{1-x}$Sr$_x$TiO$_3$ (0$leq $x$leq $1) were deposited on SrTiO$_3$ substrates using the pulsed laser deposition. Films of epitaxial nature comprised of spherical mounds having uniform size are obtained. Magnetotransport properties of the films reveal a ferromagnetic Curie temperature in the range of 145-158 K and negative magnetoresistance as high as 30%, depending on the type of ferroelectric layers employed for their growth (QTR{it}{i.e.} QTR{it}{x} value). Ferroelectricity at temperatures ranging from 55 K to 105 K is also observed, depending on the barium content. More importantly, the multiferroic nature of the film is determined by the appearance of negative magnetocapacitance, which was found to be maximum around the ferroelectric transition temperature (3% per QTR{it}{tesla}). These results are understood based on the role of the ferroelectric/paraelectric layers and strains in inducing the multiferroism.
It is thought that the proposed new family of multi-functional materials namely the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching we show that the recently discovered thermoelectric semiconductor $AgSbSe_{2}$ has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as $AgSbSe_{2}$ crystalizes in cubic rock salt structure with centro-symmetric space group (Fm-3m) and therefore no ferroelectricity is expected. However, from high resolution transmission electron microscopy (HRTEM) measurement we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in $AgSbSe_{2}$ and gives rise to the observed ferroelectricity. Stereochemically active $5s^{2}$ lone pair of Sb can also give rise to local structural distortion, which creates ferroelectricity in $AgSbSe_{2}$.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO$_{2}$) is todays most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO$_2$ has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart form classic ferroelectrics (e.g., perovskite oxides like PbTiO$_3$) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO$_2$ thin films using piezoresponse force microscopy. Further,the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
Bias stress degradation in conjugated polymer field-effect transistors is a fundamental problem in these disordered materials and can be traced back to interactions of the material with environmental species,1,2,3 as well as fabrication-induced defects.4,5 However, the effect of the end groups of the polymer gate dielectric and the associated dipole-induced disorder on bias stress stability has not been studied so far in high-performing n-type materials, such as N2200.6,7 In this work, the performance metrics of N2200 transistors are examined with respect to dielectrics with different end groups (Cytop-M and Cytop-S8). We hypothesize that the polar end groups would lead to increased dipole-induced disorder, and worse performance.1,9,10 The long-time annealing scheme at lower temperatures used in the paper is assumed to lead to better crystallization by allowing the crystalline domains to reorganize in the presence of the solvent.11 It is hypothesized that the higher crystallinity could narrow down the range at which energy carriers are induced and thus decrease the gate dependence of the mobility. The results show that the dielectric end groups do not influence the bias stress stability of N2200 transistors. However, long annealing times result in a dramatic improvement in bias stress stability, with the most stable devices having a mobility that is only weakly dependent on or independent of gate voltage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا