Do you want to publish a course? Click here

Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection

76   0   0.0 ( 0 )
 Added by Tao Chen
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results, by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.



rate research

Read More

136 - Zongxia Liang , Fengyi Yuan 2021
This paper considers time-inconsistent problems when control and stopping strategies are required to be made simultaneously (called stopping control problems by us). We first formulate the time-inconsistent stopping control problems under general multi-dimensional controlled diffusion model and propose a formal definition of their equilibriums. We show that an admissible pair $(hat{u},C)$ of control-stopping policy is equilibrium if and only if the axillary function associated to it solves the extended HJB system. We provide almost equivalent conditions to the boundary term of this extended HJB system, which is related to the celebrated smooth fitting principles. As applications of our theoretical results, we develop an investment-withdrawal decision model for time-inconsistent decision makers in infinite time horizon. We provide two concrete examples, one of which includes constant proportion investment with one side threshold withdrawal strategy as equilibrium; in another example, all strategies with constant proportion investment are proved to be irrational, no matter what the withdrawal strategy is.
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
83 - Yu-Jui Huang , Zhou Zhou 2018
A new definition of continuous-time equilibrium controls is introduced. As opposed to the standard definition, which involves a derivative-type operation, the new definition parallels how a discrete-time equilibrium is defined, and allows for unambiguous economic interpretation. The terms strong equilibria and weak equilibria are coined for controls under the new and the standard definitions, respectively. When the state process is a time-homogeneous continuous-time Markov chain, a careful asymptotic analysis gives complete characterizations of weak and strong equilibria. Thanks to Kakutani-Fans fixed-point theorem, general existence of weak and strong equilibria is also established, under additional compactness assumption. Our theoretic results are applied to a two-state model under non-exponential discounting. In particular, we demonstrate explicitly that there can be incentive to deviate from a weak equilibrium, which justifies the need for strong equilibria. Our analysis also provides new results for the existence and characterization of discrete-time equilibria under infinite horizon.
This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.
75 - Yu-Jui Huang , Zhou Zhou 2021
This paper studies a nonzero-sum Dynkin game in discrete time under non-exponential discounting. For both players, there are two levels of game-theoretic reasoning intertwined. First, each player looks for an intra-personal equilibrium among her current and future selves, so as to resolve time inconsistency triggered by non-exponential discounting. Next, given the other players chosen stopping policy, each player selects a best response among her intra-personal equilibria. A resulting inter-personal equilibrium is then a Nash equilibrium between the two players, each of whom employs her best intra-personal equilibrium with respect to the other players stopping policy. Under appropriate conditions, we show that an inter-personal equilibrium exists, based on concrete iterative procedures along with Zorns lemma. To illustrate our theoretic results, we investigate a two-player real options valuation problem: two firms negotiate a deal of cooperation to initiate a project jointly. By deriving inter-personal equilibria explicitly, we find that coercive power in negotiation depends crucially on the impatience levels of the two firms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا