Do you want to publish a course? Click here

Reliability Validation of Learning Enabled Vehicle Tracking

91   0   0.0 ( 0 )
 Added by Youcheng Sun
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper studies the reliability of a real-world learning-enabled system, which conducts dynamic vehicle tracking based on a high-resolution wide-area motion imagery input. The system consists of multiple neural network components -- to process the imagery inputs -- and multiple symbolic (Kalman filter) components -- to analyse the processed information for vehicle tracking. It is known that neural networks suffer from adversarial examples, which make them lack robustness. However, it is unclear if and how the adversarial examples over learning components can affect the overall system-level reliability. By integrating a coverage-guided neural network testing tool, DeepConcolic, with the vehicle tracking system, we found that (1) the overall system can be resilient to some adversarial examples thanks to the existence of other components, and (2) the overall system presents an extra level of uncertainty which cannot be determined by analysing the deep learning components only. This research suggests the need for novel verification and validation methods for learning-enabled systems.



rate research

Read More

Estimating the states of surrounding traffic participants stays at the core of autonomous driving. In this paper, we study a novel setting of this problem: model-free single-object tracking (SOT), which takes the object state in the first frame as input, and jointly solves state estimation and tracking in subsequent frames. The main purpose for this new setting is to break the strong limitation of the popular detection and tracking scheme in multi-object tracking. Moreover, we notice that shape completion by overlaying the point clouds, which is a by-product of our proposed task, not only improves the performance of state estimation but also has numerous applications. As no benchmark for this task is available so far, we construct a new dataset LiDAR-SOT and corresponding evaluation protocols based on the Waymo Open dataset. We then propose an optimization-based algorithm called SOTracker involving point cloud registration, vehicle shapes, correspondence, and motion priors. Our quantitative and qualitative results prove the effectiveness of our SOTracker and reveal the challenging cases for SOT in point clouds, including the sparsity of LiDAR data, abrupt motion variation, etc. Finally, we also explore how the proposed task and algorithm may benefit other autonomous driving applications, including simulating LiDAR scans, generating motion data, and annotating optical flow. The code and protocols for our benchmark and algorithm are available at https://github.com/TuSimple/LiDAR_SOT/. A video demonstration is at https://www.youtube.com/watch?v=BpHixKs91i8.
93 - Runsheng Xu , Hao Xiang , Xin Xia 2021
Employing Vehicle-to-Vehicle communication to enhance perception performance in self-driving technology has attracted considerable attention recently; however, the absence of a suitable open dataset for benchmarking algorithms has made it difficult to develop and assess cooperative perception technologies. To this end, we present the first large-scale open simulated dataset for Vehicle-to-Vehicle perception. It contains over 70 interesting scenes, 111,464 frames, and 232,913 annotated 3D vehicle bounding boxes, collected from 8 towns in CARLA and a digital town of Culver City, Los Angeles. We then construct a comprehensive benchmark with a total of 16 implemented models to evaluate several information fusion strategies~(i.e. early, late, and intermediate fusion) with state-of-the-art LiDAR detection algorithms. Moreover, we propose a new Attentive Intermediate Fusion pipeline to aggregate information from multiple connected vehicles. Our experiments show that the proposed pipeline can be easily integrated with existing 3D LiDAR detectors and achieve outstanding performance even with large compression rates. To encourage more researchers to investigate Vehicle-to-Vehicle perception, we will release the dataset, benchmark methods, and all related codes in https://mobility-lab.seas.ucla.edu/opv2v/.
Prior correlation filter (CF)-based tracking methods for unmanned aerial vehicles (UAVs) have virtually focused on tracking in the daytime. However, when the night falls, the trackers will encounter more harsh scenes, which can easily lead to tracking failure. In this regard, this work proposes a novel tracker with anti-dark function (ADTrack). The proposed method integrates an efficient and effective low-light image enhancer into a CF-based tracker. Besides, a target-aware mask is simultaneously generated by virtue of image illumination variation. The target-aware mask can be applied to jointly train a target-focused filter that assists the context filter for robust tracking. Specifically, ADTrack adopts dual regression, where the context filter and the target-focused filter restrict each other for dual filter learning. Exhaustive experiments are conducted on typical dark sceneries benchmark, consisting of 37 typical night sequences from authoritative benchmarks, i.e., UAVDark, and our newly constructed benchmark UAVDark70. The results have shown that ADTrack favorably outperforms other state-of-the-art trackers and achieves a real-time speed of 34 frames/s on a single CPU, greatly extending robust UAV tracking to night scenes.
We present a novel approach to robustly detect and perceive vehicles in different camera views as part of a cooperative vehicle-infrastructure system (CVIS). Our formulation is designed for arbitrary camera views and makes no assumptions about intrinsic or extrinsic parameters. First, to deal with multi-view data scarcity, we propose a part-assisted novel view synthesis algorithm for data augmentation. We train a part-based texture inpainting network in a self-supervised manner. Then we render the textured model into the background image with the target 6-DoF pose. Second, to handle various camera parameters, we present a new method that produces dense mappings between image pixels and 3D points to perform robust 2D/3D vehicle parsing. Third, we build the first CVIS dataset for benchmarking, which annotates more than 1540 images (14017 instances) from real-world traffic scenarios. We combine these novel algorithms and datasets to develop a robust approach for 2D/3D vehicle parsing for CVIS. In practice, our approach outperforms SOTA methods on 2D detection, instance segmentation, and 6-DoF pose estimation, by 4.5%, 4.3%, and 2.9%, respectively. More details and results are included in the supplement. To facilitate future research, we will release the source code and the dataset on GitHub.
The vehicle re-identification (ReID) plays a critical role in the perception system of autonomous driving, which attracts more and more attention in recent years. However, to our best knowledge, there is no existing complete solution for the surround-view system mounted on the vehicle. In this paper, we argue two main challenges in above scenario: i) In single camera view, it is difficult to recognize the same vehicle from the past image frames due to the fisheye distortion, occlusion, truncation, etc. ii) In multi-camera view, the appearance of the same vehicle varies greatly from different cameras viewpoints. Thus, we present an integral vehicle Re-ID solution to address these problems. Specifically, we propose a novel quality evaluation mechanism to balance the effect of tracking boxs drift and targets consistency. Besides, we take advantage of the Re-ID network based on attention mechanism, then combined with a spatial constraint strategy to further boost the performance between different cameras. The experiments demonstrate that our solution achieves state-of-the-art accuracy while being real-time in practice. Besides, we will release the code and annotated fisheye dataset for the benefit of community.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا