Do you want to publish a course? Click here

VGAI: End-to-End Learning of Vision-Based Decentralized Controllers for Robot Swarms

82   0   0.0 ( 0 )
 Added by Ting-Kueu Hu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Decentralized coordination of a robot swarm requires addressing the tension between local perceptions and actions, and the accomplishment of a global objective. In this work, we propose to learn decentralized controllers based on solely raw visual inputs. For the first time, that integrates the learning of two key components: communication and visual perception, in one end-to-end framework. More specifically, we consider that each robot has access to a visual perception of the immediate surroundings, and communication capabilities to transmit and receive messages from other neighboring robots. Our proposed learning framework combines a convolutional neural network (CNN) for each robot to extract messages from the visual inputs, and a graph neural network (GNN) over the entire swarm to transmit, receive and process these messages in order to decide on actions. The use of a GNN and locally-run CNNs results naturally in a decentralized controller. We jointly train the CNNs and the GNN so that each robot learns to extract messages from the images that are adequate for the team as a whole. Our experiments demonstrate the proposed architecture in the problem of drone flocking and show its promising performance and scalability, e.g., achieving successful decentralized flocking for large-sized swarms consisting of up to 75 drones.



rate research

Read More

We demonstrate the possibility of learning drone swarm controllers that are zero-shot transferable to real quadrotors via large-scale multi-agent end-to-end reinforcement learning. We train policies parameterized by neural networks that are capable of controlling individual drones in a swarm in a fully decentralized manner. Our policies, trained in simulated environments with realistic quadrotor physics, demonstrate advanced flocking behaviors, perform aggressive maneuvers in tight formations while avoiding collisions with each other, break and re-establish formations to avoid collisions with moving obstacles, and efficiently coordinate in pursuit-evasion tasks. We analyze, in simulation, how different model architectures and parameters of the training regime influence the final performance of neural swarms. We demonstrate the successful deployment of the model learned in simulation to highly resource-constrained physical quadrotors performing stationkeeping and goal swapping behaviors. Code and video demonstrations are available at the project website https://sites.google.com/view/swarm-rl.
155 - Yuanyuan Shi , Bolun Xu 2021
This paper proposes a novel end-to-end deep learning framework that simultaneously identifies demand baselines and the incentive-based agent demand response model, from the net demand measurements and incentive signals. This learning framework is modularized as two modules: 1) the decision making process of a demand response participant is represented as a differentiable optimization layer, which takes the incentive signal as input and predicts users response; 2) the baseline demand forecast is represented as a standard neural network model, which takes relevant features and predicts users baseline demand. These two intermediate predictions are integrated, to form the net demand forecast. We then propose a gradient-descent approach that backpropagates the net demand forecast errors to update the weights of the agent model and the weights of baseline demand forecast, jointly. We demonstrate the effectiveness of our approach through computation experiments with synthetic demand response traces and a large-scale real world demand response dataset. Our results show that the approach accurately identifies the demand response model, even without any prior knowledge about the baseline demand.
We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method for quadrupedal locomotion that leverages a Transformer-based model for fusing proprioceptive states and visual observations. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We show that our method obtains significant improvements over policies with only proprioceptive state inputs, and that Transformer-based models further improve generalization across environments. Our project page with videos is at https://RchalYang.github.io/LocoTransformer .
This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an end-to-end vision-based adaptive cruise control (ACC) system. A simulation environment of a highway scene was set up in Unity, which is a game engine that provided both physical models of vehicles and feature data for training and testing. Well-designed reward functions associated with the following distance and throttle/brake force were implemented in the reinforcement learning model for both internal combustion engine (ICE) vehicles and electric vehicles (EV) to perform adaptive cruise control. The gap statistics and total energy consumption are evaluated for different vehicle types to explore the relationship between reward functions and powertrain characteristics. Compared with the traditional radar-based ACC systems or human-in-the-loop simulation, the proposed vision-based ACC system can generate either a better gap regulated trajectory or a smoother speed trajectory depending on the preset reward function. The proposed system can be well adaptive to different speed trajectories of the preceding vehicle and operated in real-time.
224 - Qingrui Zhang , Hao Dong , Wei Pan 2020
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional model-based control methods can hardly be applied. Compared with model-based control in control theory, deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics. However, to directly apply DRL to decentralized multi-agent control is challenging, as interactions among agents make the learning environment non-stationary. More importantly, the existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system from a control-theoretic perspective, so the learned control polices are highly possible to generate abnormal or dangerous behaviors in real applications. Hence, without stability guarantee, the application of the existing MARL algorithms to real multi-agent systems is of great concern, e.g., UAVs, robots, and power systems, etc. In this paper, we aim to propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee. The new MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is proposed under the well-known framework of centralized-training-with-decentralized-execution. The closed-loop stability is guaranteed by the introduction of a stability constraint during the policy improvement in our MASAC algorithm. The stability constraint is designed based on Lyapunovs method in control theory. To demonstrate the effectiveness, we present a multi-agent navigation example to show the efficiency of the proposed MASAC algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا