No Arabic abstract
When Landau levels (LLs) become degenerate near the Fermi energy in the quantum Hall regime, interaction effects can drastically modify the electronic ground state. We study the quantum Hall ferromagnet formed in a two-dimensional hole gas around the LL filling factor $ u=1$ in the vicinity of a LL crossing in the heave-hole valence band. Cavity spectroscopy in the strong-coupling regime allows us to optically extract the two-dimensional hole gas spin polarization. By analyzing this polarization as a function of hole density and magnetic field, we observe a spin flip of the ferromagnet. Furthermore, the depolarization away from $ u=1$ accelerates close to the LL crossing. This is indicative of an increase in the size of Skyrmion excitations as the effective Zeeman energy vanishes at the LL crossing.
A spin-rotation mode emerging in a quantum Hall ferromagnet due to laser pulse excitation is studied. This state, macroscopically representing a rotation of the entire electron spin-system to a certain angle, is not microscopically equivalent to a coherent turn of all spins as a single-whole and is presented in the form of a combination of eigen quantum states corresponding to all possible S_z spin numbers. The motion of the macroscopic quantum state is studied microscopically by solving a non-stationary Schroedinger equation and by means of a kinetic approach where damping of the spin-rotation mode is related to an elementary process, namely, transformation of a `Goldstone spin exciton to a `spin-wave exciton. The system exhibits a spin stochastizationa mechanism (determined by spatial fluctuations of the Lande g-factor) ensuring damping, transverse spin relaxation, but irrelevant to decay of spin-wave excitons and thus not involving longitudinal relaxation, i.e., recovery of the S_z number to its equilibrium value.
We consider a non-Abelian candidate state at filling factor $ u=3/7$ state belonging to the parton family. We find that, in the second Landau level of GaAs (i.e. at filling factor $ u=2+3/7$), this state is energetically superior to the standard Jain composite-fermion state and also provides a very good representation of the ground state found in exact diagonalization studies of finite systems. This leads us to predict that emph{if} a fractional quantum Hall effect is observed at $ u=3/7$ in the second Landau level, it is likely to be described by this new non-Abelian state. We enumerate experimentally measurable properties that can verify the topological structure of this state.
Spin relaxation in a quantum Hall ferromagnet, where filling is $ u=1, 1/3, 1/5,...$, can be considered in terms of spin wave annihilation/creation processes. Hyperfine coupling with the nuclei of the GaAs matrix provides spin non-conservation in the two-dimensional electron gas and determines spin relaxation in the quantum Hall system. This mechanism competes with spin-orbit coupling channels of spin-wave decay and can even dominate in a low-temperature regime where $T$ is much smaller than the Zeeman gap. In this case the spin-wave relaxation process occurs non-exponentially with time and does not depend on the temperature. The competition of different relaxation channels results in crossovers in the dominant mechanism, leading to non-monotonic behavior of the characteristic relaxation time with the magnetic field. We predict that the relaxation times should reach maxima at $Bsimeq 18,$T in the $ u=1$ Quantum Hall system and at $Bsimeq 12,$T for that of $ u=1/3,$. We estimate these times as $sim10,-,30,mu$s and $sim2,-,5,mu$s, respectively.
We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Trial wave functions at these fillings are the Laughlin state and the Moore-Reed-Pfaffian state. The ground state excitation energy gaps and pair-correlation functions at fractional filling factor 7/3 and 5/2 in the second Landau level are calculated. We find that the spin-orbit interaction stabilizes the fractional quantum Hall states.
Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG), in which the real spin, orbital pseudospin and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate quantum Hall plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only the in presence of an interlayer potential U. In the phase space of U and filling factor, we observe an intriguing hexagon pattern, which is accounted for by a model based on crossings between symmetry-broken LLs.