We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Trial wave functions at these fillings are the Laughlin state and the Moore-Reed-Pfaffian state. The ground state excitation energy gaps and pair-correlation functions at fractional filling factor 7/3 and 5/2 in the second Landau level are calculated. We find that the spin-orbit interaction stabilizes the fractional quantum Hall states.
We present activation gap measurements of the fractional quantum Hall effect (FQHE) in the second Landau level. Signatures for 14 (5) distinct incompressible FQHE states are seen in a high (low) mobility sample with the enigmatic 5/2 even denominator FQHE having a large activation gap of $sim$600 ($sim$300mK) in the high (low) mobility sample. Our measured large relative gaps for 5/2, 7/3, and 8/3 FQHE indicate emergence of exotic FQHE correlations in the second Ladau level, possibly quite different from the well-known lowest Landau level Laughlin correlations. Our measured 5/2 gap is found to be in reasonable agreement with the theoretical gap once finite width and disorder broadening corrections are taken into account.
Specific heat has had an important role in the study of superfluidity and superconductivity, and could provide important information about the fractional quantum Hall effect as well. However, traditional measurements of the specific heat of a two-dimensional electron gas are difficult due to the large background contribution of the phonon bath, even at very low temperatures. Here, we report measurements of the specific heat per electron in the second Landau level by measuring the thermalization time between the electrons and phonons. We observe activated behaviour of the specific heat of the 5/2 and 7/3 fractional quantum Hall states, and extract the entropy by integrating over temperature. Our results are in excellent agreement with previous measurements of the entropy via longitudinal thermopower. Extending the technique to lower temperatures could lead to detection of the non-Abelian entropy predicted for bulk quasiparticles at 5/2 filling
For certain measurements, the Corbino geometry has a distinct advantage over the Hall and van der Pauw geometries, in that it provides a direct probe of the bulk 2DEG without complications due to edge effects. This may be important in enabling detection of the non-Abelian entropy of the 5/2 fractional quantum Hall state via bulk thermodynamic measurements. We report the successful fabrication and measurement of a Corbino-geometry sample in an ultra-high mobility GaAs heterostructure, with a focus on transport in the second and higher Landau levels. In particular, we report activation energy gaps of fractional quantum Hall states, with all edge effects ruled out, and extrapolate the conductivity prefactor from the Arrhenius fits. Our results show that activated transport in the second Landau level remains poorly understood. The development of this Corbino device opens the possibility to study the bulk of the 5/2 state using techniques not possible in other geometries.
We compute the effect of Landau-level-mixing on the effective two-body and three-body pseudopotentials for electrons in the lowest and second Landau levels. We find that the resulting effective three-body interaction is attractive in the lowest relative angular momentum channel. The renormalization of the two-body pseudopotentials also shows interesting structure. We comment on the implications for the $ u=5/2$ fractional quantum Hall state.
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin branches the onset temperatures of the reentrant states scale with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an important role in the formation of these reentrant states evincing their collective nature.