Do you want to publish a course? Click here

Superfluid phases induced by the dipolar interactions

135   0   0.0 ( 0 )
 Added by Rebecca Kraus
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and interacting via $s$-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping terms due to the interactions. We identify the parameter regime for which the coefficients of the interaction-induced hopping terms become negative. For these parameters we numerically determine the phase diagram for a canonical ensemble and by means of density matrix renormalization group. We show that at sufficiently large values of the dipolar strength there is a quantum interference between the tunneling due to single-particle effects and the one due to the interactions. Because of this phenomenon, incompressible phases appear at relatively large values of the single-particle tunneling rates. This quantum interference cuts the phase diagram into two different, disconnected superfluid phases. In particular, at vanishing kinetic energy, the phase is always superfluid with a staggered superfluid order parameter. These dynamics emerge from quantum interference phenomena between quantum fluctuations and interactions and shed light into their role in determining the thermodynamic properties of quantum matter.



rate research

Read More

146 - Zhe-Yu Shi , Ran Qi , Hui Zhai 2011
We show that s-wave scattering resonances induced by dipolar interactions in a polar molecular gas have a universal large and positive effective range, which is very different from Feshbach resonances realized in cold atoms before, where the effective range is either negligible or negative. Such a difference has important consequence in many-body physics. At high temperature regime, a positive effective range gives rise to stronger repulsive interaction energy for positive scattering length, and weaker attractive interaction energy for negative scattering length. While at low-temperatures, we study polaron problem formed by single impurity molecule, and we find that the polaron binding energy increases at the BEC side and decreases at the BCS side. All these effects are in opposite to narrow Feshbach resonances where the effective range is negative.
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correlated hopping due to the dipolar interactions, the coefficients are found from the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms are negative and can interfere with the tunneling due to single-particle effects. We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using DMRG.
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC respectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
We present a systematic derivation of the effective action for interacting vortices in a non-relativistic two-dimensional superfluid described by the Gross-Pitaevskii equation by integrating out longitudinal fluctuations of the order parameter. There are no logarithmically divergent coefficients in the equations of motion. Our analysis is valid in a dilute limit of vortices where the intervortex spacing is large compared to the core size, and where number fluctuations of atoms in vortex cores are suppressed. We analyze sound-induced corrections to the dynamics of a vortex-antivortex pair and show that there is no instability to annihilation, suggesting that sound-mediated interactions are not strong enough to ruin an inverse energy cascade in two-dimensional zero-temperature superfluid turbulence.
171 - M. Abad , M. Guilleumas , R. Mayol 2009
We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of 52Cr atoms with dipole-dipole and s-wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s-wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s-wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا