No Arabic abstract
Ultrahigh-intensity lasers (10$^{18}$-10$^{22}$W/cm$^{2}$) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (10$^{12}$ V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (10$^{10}$A/cm$^2$) in short time scale ($sim$ps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petawatt lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.
Electron-positron pairs, produced in intense laser-solid interactions, are diagnosed using magnetic spectrometers with image plates, such as the National Ignition Facility (NIF) Electron Positron Proton Spectrometers (EPPS). Although modeling can help infer the quantitative value, the accuracy of the models needs to be verified to ensure measurement quality. The dispersion of low-energy electrons and positrons may be affected by fringe magnetic fields near the entrance of the EPPS. We have calibrated the EPPS with six electron beams from a Siemens Oncor linear accelerator (linac) ranging in energy from $2.7$--$15.2$ $mathrm{MeV}$ as they enter the spectrometer. A Geant4 TOPAS Monte-Carlo simulation was set up to match depth dose curves and lateral profiles measured in water at $100$ $mathrm{cm}$ source-surface distance. An accurate relationship was established between the bending magnet current setting and the energy of the electron beam at the exit window. The simulations and measurements were used to determine the energy distributions of the six electron beams at the EPPS slit. Analysis of the scanned image plates together with the determined energy distribution arriving in the spectrometer provide improved dispersion curves for the EPPS.
Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bi-chromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polarization over a wide range of parameters and determine the optimum conditions for maximum radiative polarization. Those results are contrasted with a Monte-Carlo algorithm where photon emission and associated spin effects are treated fully quantum mechanically using spin-dependent photon emission rates. The latter method includes realistic focusing laser fields, which allows us to simulate a near-term experimentally feasible scenario of a 8 GeV electron beam scattering from a 1 PW laser pulse and provide a measurement that would verify the ultrafast radiative polarization in high-intensity laser pulses that we predict. Aspects of spin dependent radiation reaction are also discussed, with spin polarization leading to a measurable (5%) splitting of the energies of spin-up and spin-down electrons.
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$m-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of $B>$10 MG and $E>$0.1 MV/$mu$m fields with a $mu$m-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length $gtrsim 0.13 lambda_0 sqrt{a_0}$. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multi-purpose applications.
Dimensional effects in particle-in-cell (PIC) simulation of target normal sheath acceleration (TNSA) of protons are considered. As the spatial divergence of the laser-accelerated hot sheath electrons and the resulting space-charge electric field on the target backside depend on the spatial dimension, the maximum energy of the accelerated protons obtained from three-dimensional (3D) simulations is usually much less that from two-dimensional (2D) simulations. By closely examining the TNSA of protons in 2D and 3D PIC simulations, we deduce an empirical ratio between the maximum proton energies obtained from the 2D and 3D simulations. This ratio may be useful for estimating the maximum proton energy in realistic (3D) TNSA from the results of the corresponding 2D simulation. It is also shown that the scaling law also applies to TNSA from structured targets.