Do you want to publish a course? Click here

Scattering, absorption, and thermal emission by large cometary dust particles: Synoptic numerical solution

83   0   0.0 ( 0 )
 Added by Johannes Markkanen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Remote light scattering and thermal infrared observations provide clues about the physical properties of cometary and interplanetary dust particles. Identifying these properties will lead to a better understanding of the formation and evolution of the Solar System. Aims: We present a numerical solution for the radiative and conductive heat transport in a random particulate medium enclosed by an arbitrarily shaped surface. The method will be applied to study thermal properties of cometary dust particles. Methods: The recently introduced incoherent Monte Carlo radiative transfer method developed for scattering, absorption, and propagation of electromagnetic waves in dense discrete random media is extended for radiative heat transfer and thermal emission. The solution is coupled with the conductive Fourier transport equation that is solved with the finite-element method. Results: The proposed method allows the synoptic analysis of light scattering and thermal emission by large cometary dust particles consisting of submicrometer-sized grains. In particular, we show that these particles can sustain significant temperature gradients resulting in the superheating factor phase function observed for the coma of comet 67P/Churyumov-Gerasimenko.



rate research

Read More

Context. Cometary dust particles are subjected to various forces after being lifted off the nucleus. These forces define the dynamics of dust, trajectories, alignment, and fragmentation, which, in turn, have a significant effect on the particle distribution in the coma. Aims. We develop a numerical thermophysical model that is applicable to icy cometary dust to study the forces attributed to the sublimation of ice. Methods. We extended the recently introduced synoptic model for ice-free dust particles to ice-containing dust. We introduced an additional source term to the energy balance equation accounting for the heat of sublimation and condensation. We use the direct simulation Monte Carlo approach with the dusty gas model to solve the mass balance equation and the energy balance equation simultaneously. Results. The numerical tests show that the proposed method can be applied for dust particles covering the size range from tens of microns to centimeters with a moderate computational cost. We predict that for an assumed ice volume fraction of 0.05, particles with a radius, r >> 1 mm, at 1.35 AU, may disintegrate into mm-sized fragments due to internal pressure build-up. Particles with r < 1 cm lose their ice content within minutes. Hence, we expect that only particles with r > 1cm may demonstrate sustained sublimation and the resulting outgassing forces.
We present a possible correlation between the properties of scattered and thermal radiation from dust and the principal dust characteristics responsible for this relationship. To this end, we use the NASA/PDS archival polarimetric data on cometary dust in the Red (0.62--0.73 $mu$m) and K (2.00--2.39 $mu$m) domains to leverage the relative excess of the polarisation degree of a comet to the average trend at the given phase angle ($P_{rm excess}$) as a metric of the dusts scattered light characteristics. The flux excess of silicate emissions to the continuum around 10 $mu$m ($F_{rm Si}/F_{rm cont}$) is adopted from previous studies as a metric of the dusts MIR feature. The two metrics show a positive correlation when $P_{rm excess}$ is measured in the K domain. No significant correlation was identified in the Red domain. The gas-rich comets have systematically weaker $F_{rm Si}/F_{rm cont}$ than the dust-rich ones, yet both groups retain the same overall tendency with different slope values. The observed positive correlation between the two metrics indicates that composition is a peripheral factor in characterising the dusts polarimetric and silicate emission properties. The systematic difference in $F_{rm Si}/F_{rm cont}$ for gas-rich versus dust-rich comets would rather correspond with the difference in their dust size distribution. Hence, our results suggest that the current MIR spectral models of cometary dust should prioritise the dust size and porosity over the composition. With light scattering being sensitive to different size scales in two wavebands, we expect the K-domain polarimetry to be sensitive to the properties of dust aggregates, such as size and porosity, which might have been influenced by evolutionary processes. On the other hand, the Red-domain polarimetry reflects the characteristics of sub-$mu$m constituents in the aggregate.
We model the infrared emission from zodiacal dust detected by the IRAS and COBE missions, with the aim of estimating the relative contributions of asteroidal, cometary and interstellar dust to the zodiacal cloud. Our most important result is the detection of an isotropic component of foreground radiation due to interstellar dust. The dust in the inner solar system is known to have a fan-like distribution. If this is assumed to extend to the orbit of Mars, we find that cometary, asteroidal and interstellar dust account for 70%, 22% and 7.5% of the dust in the fan. We find a worse fit if the fan is assumed to extend to the orbit of Jupiter. Our model is broadly consistent with the analysis by Divine (1993) of interplanetary dust detected by Ulysses and other spacecraft. Our estimate of the mass-density of interstellar dust in the inner solar system is consistent with estimates from Ulysses at 1.5 au, but is an order of magnitude higher than Ulysses estimates at r > 4 au. Only 1% of the zodiacal dust arriving at the earth would be interstellar, in our model. Our models can be further tested by ground-based kinematical studies of the zodiacal cloud, which need to extend over a period of years to monitor solar cycle variations in interstellar dust, by dynamical simulations, and by in situ measurements from spacecraft.
Tiny meteoroids entering the Earths atmosphere and inducing meteor showers have long been thought to originate partly from cometary dust. Together with other dust particles, they form a huge cloud around the Sun, the zodiacal cloud. From our previous studies of the zodiacal light, as well as other independent methods (dynamical studies, infrared observations, data related to Earths environment), it is now established that a significant fraction of dust particles entering the Earths atmosphere comes from Jupiter-family comets (JFCs). This paper relies on our understanding of key properties of the zodiacal cloud and of comet 67P/Churyumov-Gerasimenko, extensively studied by the Rosetta mission to a JFC. The interpretation, through numerical and experimental simulations of zodiacal light local polarimetric phase curves, has recently allowed us to establish that interplanetary dust is rich in absorbing organics and consists of fluffy particles. The ground-truth provided by Rosetta presently establishes that the cometary dust particles are rich in organic compounds and consist of quite fluffy and irregular aggregates. Our aims are as follows: (1) to make links, back in time, between peculiar micrometeorites, tiny meteoroids, interplanetary dust particles, cometary dust particles, and the early evolution of the Solar System, and (2) to show how detailed studies of such meteoroids and of cometary dust particles can improve the interpretation of observations of dust in protoplanetary and debris disks. Future modeling of dust in such disks should favor irregular porous particles instead of more conventional compact spherical particles.
A numerical approach to the problem of wave scattering by many small particles is developed under the assumptions k<<1, d>>a, where a is the size of the particles and d is the distance between the neighboring particles. On the wavelength one may have many small particles. An impedance boundary conditions are assumed on the boundaries of small particles. The results of numerical simulation show good agreement with the theory. They open a way to numerical simulation of the method for creating materials with a desired refraction coefficient.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا