Do you want to publish a course? Click here

Towards a Fast Steady-State Visual Evoked Potentials (SSVEP) Brain-Computer Interface (BCI)

148   0   0.0 ( 0 )
 Added by Aung Aung Phyo Wai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) provides reliable responses leading to high accuracy and information throughput. But achieving high accuracy typically requires a relatively long time window of one second or more. Various methods were proposed to improve sub-second response accuracy through subject-specific training and calibration. Substantial performance improvements were achieved with tedious calibration and subject-specific training; resulting in the users discomfort. So, we propose a training-free method by combining spatial-filtering and temporal alignment (CSTA) to recognize SSVEP responses in sub-second response time. CSTA exploits linear correlation and non-linear similarity between steady-state responses and stimulus templates with complementary fusion to achieve desirable performance improvements. We evaluated the performance of CSTA in terms of accuracy and Information Transfer Rate (ITR) in comparison with both training-based and training-free methods using two SSVEP data-sets. We observed that CSTA achieves the maximum mean accuracy of 97.43$pm$2.26 % and 85.71$pm$13.41 % with four-class and forty-class SSVEP data-sets respectively in sub-second response time in offline analysis. CSTA yields significantly higher mean performance (p<0.001) than the training-free method on both data-sets. Compared with training-based methods, CSTA shows 29.33$pm$19.65 % higher mean accuracy with statistically significant differences in time window less than 0.5 s. In longer time windows, CSTA exhibits either better or comparable performance though not statistically significantly better than training-based methods. We show that the proposed method brings advantages of subject-independent SSVEP classification without requiring training while enabling high target recognition performance in sub-second response time.



rate research

Read More

Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in information geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. This paper proposes a comprehensive review of the actual tools of information geometry and how they could be applied on covariance matrices of EEG. In practice, covariance matrices should be estimated, thus a thorough study of all estimators is conducted on real EEG dataset. As a main contribution, this paper proposes an online implementation of a classifier in the Riemannian space and its subsequent assessment in Steady-State Visually Evoked Potential (SSVEP) experimentations.
Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP signals are acquired asynchronously, such approaches tend to fail. In this paper, we show how a compact convolutional neural network (Compact-CNN), which only requires raw EEG signals for automatic feature extraction, can be used to decode signals from a 12-class SSVEP dataset without the need for any domain-specific knowledge or calibration data. We report across subject mean accuracy of approximately 80% (chance being 8.3%) and show this is substantially better than current state-of-the-art hand-crafted approaches using canonical correlation analysis (CCA) and Combined-CCA. Furthermore, we analyze our Compact-CNN to examine the underlying feature representation, discovering that the deep learner extracts additional phase and amplitude related features associated with the structure of the dataset. We discuss how our Compact-CNN shows promise for BCI applications that allow users to freely gaze/attend to any stimulus at any time (e.g., asynchronous BCI) as well as provides a method for analyzing SSVEP signals in a way that might augment our understanding about the basic processing in the visual cortex.
There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e., tACS. However, little is known about the interplay between the rhythmic stimulation and visual stimulation. Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20-min 10-Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS. Our result revealed that tACS boosted the 10-Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min. Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
The cross-subject application of EEG-based brain-computer interface (BCI) has always been limited by large individual difference and complex characteristics that are difficult to perceive. Therefore, it takes a long time to collect the training data of each user for calibration. Even transfer learning method pre-training with amounts of subject-independent data cannot decode different EEG signal categories without enough subject-specific data. Hence, we proposed a cross-subject EEG classification framework with a generative adversarial networks (GANs) based method named common spatial GAN (CS-GAN), which used adversarial training between a generator and a discriminator to obtain high-quality data for augmentation. A particular module in the discriminator was employed to maintain the spatial features of the EEG signals and increase the difference between different categories, with two losses for further enhancement. Through adaptive training with sufficient augmentation data, our cross-subject classification accuracy yielded a significant improvement of 15.85% than leave-one subject-out (LOO) test and 8.57% than just adapting 100 original samples on the dataset 2a of BCI competition IV. Moreover, We designed a convolutional neural networks (CNNs) based classification method as a benchmark with a similar spatial enhancement idea, which achieved remarkable results to classify motor imagery EEG data. In summary, our framework provides a promising way to deal with the cross-subject problem and promote the practical application of BCI.
We study the extent to which vibrotactile stimuli delivered to the head of a subject can serve as a platform for a brain computer interface (BCI) paradigm. Six head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) brain responses, in order to define a multimodal tactile and auditory brain computer interface (taBCI). Experimental results of subjects performing online taBCI, using stimuli with a moderately fast inter-stimulus interval (ISI), validate the taBCI paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا