No Arabic abstract
We report a proof-of-concept study of extraordinary magnetoresistance (EMR) in devices of monolayer graphene encapsulated in hexagonal boron nitride, having metallic edge contacts and a central metal shunt. Extremely large EMR values, $MR=(R(B) - R_0) / R_0sim 10^5$, are achieved in part because $R_0$ approaches or crosses zero as a function of the gate voltage, exceeding that achieved in high mobility bulk semiconductor devices. We highlight the sensitivity, $dR/dB$, which in two-terminal measurements is the highest yet reported for EMR devices, and in particular exceeds prior results in graphene-based devices by a factor of 20. An asymmetry in the zero-field transport is traced to the presence of $pn$-junctions at the graphene-metal shunt interface.
Using a simple setup to bend a flexible substrate, we demonstrate deterministic and reproducible in-situ strain tuning of graphene electronic devices. Central to this method is the full hBN encapsulation of graphene, which preserves the exceptional quality of pristine graphene for transport experiments. In addition, the on-substrate approach allows one to exploit strain effects in the full range of possible sample geometries and at the same time guarantees that changes in the gate capacitance remain negligible during the deformation process. We use Raman spectroscopy to spatially map the strain magnitude in devices with two different geometries and demonstrate the possibility to engineer a strain gradient, which is relevant for accessing the valley degree of freedom with pseudo-magnetic fields. Comparing the transport characteristics of a suspended device with those of an on-substrate device, we demonstrate that our new approach does not suffer from the ambiguities encountered in suspended devices.
Magnetoresistance (MR) of ion irradiated monolayer graphene samples with variable-range hopping (VRH) mechanism of conductivity was measured at temperatures down to $T = 1.8$ K in magnetic fields up to $B = 8$ T. It was observed that in perpendicular magnetic fields, hopping resistivity $R$ decreases, which corresponds to negative MR (NMR), while parallel magnetic field results in positive MR (PMR) at low temperatures. NMR is explained on the basis of the orbital model in which perpendicular magnetic field suppresses the destructive interference of many paths through the intermediate sites in the total probability of the long-distance tunneling in the VRH regime. At low fields, a quadratic dependence ($|Delta R/R|sim B^2$) of NMR is observed, while at $B > B^*$, the quadratic dependence is replaced by the linear one. It was found that all NMR curves for different samples and different temperatures could be merged into common dependence when plotted as a function of $B/B^*$. It is shown that $B^*sim T^{1/2}$ in agreement with predictions of the orbital model. The obtained values of $B^*$ allowed also to estimate the localization radius $xi$ of charge carriers for samples with different degree of disorder. PMR in parallel magnetic fields is explained by suppression of hopping transitions via double occupied states due to alignment of electron spins.
We study the infrared cyclotron resonance of high mobility monolayer graphene encapsulated in hexagonal boron nitride, and simultaneously observe several narrow resonance lines due to interband Landau level transitions. By holding the magnetic field strength, $B$, constant while tuning the carrier density, $n$, we find the transition energies show a pronounced non-monotonic dependence on the Landau level filling factor, $ upropto n/B$. This constitutes direct evidence that electron-electron interactions contribute to the Landau level transition energies in graphene, beyond the single-particle picture. Additionally, a splitting occurs in transitions to or from the lowest Landau level, which is interpreted as a Dirac mass arising from coupling of the graphene and boron nitride lattices.
By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zig-zag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. Application of a magnetic field turns the ribbon ferromagnetic and conducting, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 Tesla or at liquid helium temperature and 300 Gauss.
Based on first-principles calculations, we studied the geometric configuration, stability and electronic structure of the two-dimensional Janus MoTeB2. The MoTeB2 monolayer is semimetal, and its attractive electronic structure reveals the perfect electron-hole compensation. Moreover, the electron-type and hole-type bands of the MoTeB2 monolayer are easily adjustable by external stain and charge doping, such as the switch of carrier polarity by charge doping, and the metal-semiconductor transition under tensile stain. These properties allow the MoTeB2 monolayer to be a controllable two-dimensional material with extraordinary large magnetoresistance in magnetic field.