No Arabic abstract
Recent years have witnessed an abundance of new publications and approaches on meta-learning. This community-wide enthusiasm has sparked great insights but has also created a plethora of seemingly different frameworks, which can be hard to compare and evaluate. In this paper, we aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning. By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning. This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning. For example, we obtain a better understanding of generalization properties, and we can readily transfer well-understood techniques, such as model ensemble, pre-training, joint training, data augmentation, and even nearest neighbor based methods. We provide an intuitive analogy of these methods in the context of meta-learning and show that they give rise to significant improvements in model performance on few-shot learning.
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corresponding test set. In this work, we advance this few-shot classification paradigm towards a scenario where unlabeled examples are also available within each episode. We consider two situations: one where all unlabeled examples are assumed to belong to the same set of classes as the labeled examples of the episode, as well as the more challenging situation where examples from other distractor classes are also provided. To address this paradigm, we propose novel extensions of Prototypical Networks (Snell et al., 2017) that are augmented with the ability to use unlabeled examples when producing prototypes. These models are trained in an end-to-end way on episodes, to learn to leverage the unlabeled examples successfully. We evaluate these methods
In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples. The code is available at https://github.com/uvavision/Curriculum-Labeling
We present a new approach, called meta-meta classification, to learning in small-data settings. In this approach, one uses a large set of learning problems to design an ensemble of learners, where each learner has high bias and low variance and is skilled at solving a specific type of learning problem. The meta-meta classifier learns how to examine a given learning problem and combine the various learners to solve the problem. The meta-meta learning approach is especially suited to solving few-shot learning tasks, as it is easier to learn to classify a new learning problem with little data than it is to apply a learning algorithm to a small data set. We evaluate the approach on a one-shot, one-class-versus-all classification task and show that it is able to outperform traditional meta-learning as well as ensembling approaches.
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possib
Machine learning analysis of longitudinal neuroimaging data is typically based on supervised learning, which requires a large number of ground-truth labels to be informative. As ground-truth labels are often missing or expensive to obtain in neuroscience, we avoid them in our analysis by combing factor disentanglement with self-supervised learning to identify changes and consistencies across the multiple MRIs acquired of each individual over time. Specifically, we propose a new definition of disentanglement by formulating a multivariate mapping between factors (e.g., brain age) associated with an MRI and a latent image representation. Then, factors that evolve across acquisitions of longitudinal sequences are disentangled from that mapping by self-supervised learning in such a way that changes in a single factor induce change along one direction in the representation space. We implement this model, named Longitudinal Self-Supervised Learning (LSSL), via a standard autoencoding structure with a cosine loss to disentangle brain age from the image representation. We apply LSSL to two longitudinal neuroimaging studies to highlight its strength in extracting the brain-age information from MRI and revealing informative characteristics associated with neurodegenerative and neuropsychological disorders. Moreover, the representations learned by LSSL facilitate supervised classification by recording faster convergence and higher (or similar) prediction accuracy compared to several other representation learning techniques.