Do you want to publish a course? Click here

Accelerating Cooperative Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree Search

196   0   0.0 ( 0 )
 Added by Karl Kurzer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Efficient driving in urban traffic scenarios requires foresight. The observation of other traffic participants and the inference of their possible next actions depending on the own action is considered cooperative prediction and planning. Humans are well equipped with the capability to predict the actions of multiple interacting traffic participants and plan accordingly, without the need to directly communicate with others. Prior work has shown that it is possible to achieve effective cooperative planning without the need for explicit communication. However, the search space for cooperative plans is so large that most of the computational budget is spent on exploring the search space in unpromising regions that are far away from the solution. To accelerate the planning process, we combined learned heuristics with a cooperative planning method to guide the search towards regions with promising actions, yielding better solutions at lower computational costs.



rate research

Read More

Todays automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments.
Urban traffic scenarios often require a high degree of cooperation between traffic participants to ensure safety and efficiency. Observing the behavior of others, humans infer whether or not others are cooperating. This work aims to extend the capabilities of automated vehicles, enabling them to cooperate implicitly in heterogeneous environments. Continuous actions allow for arbitrary trajectories and hence are applicable to a much wider class of problems than existing cooperative approaches with discrete action spaces. Based on cooperative modeling of other agents, Monte Carlo Tree Search (MCTS) in conjunction with Decoupled-UCT evaluates the action-values of each agent in a cooperative and decentralized way, respecting the interdependence of actions among traffic participants. The extension to continuous action spaces is addressed by incorporating novel MCTS-specific enhancements for efficient search space exploration. The proposed algorithm is evaluated under different scenarios, showing that the algorithm is able to achieve effective cooperative planning and generate solutions egocentric planning fails to identify.
Standard planners for sequential decision making (including Monte Carlo planning, tree search, dynamic programming, etc.) are constrained by an implicit sequential planning assumption: The order in which a plan is constructed is the same in which it is executed. We consider alternatives to this assumption for the class of goal-directed Reinforcement Learning (RL) problems. Instead of an environment transition model, we assume an imperfect, goal-directed policy. This low-level policy can be improved by a plan, consisting of an appropriate sequence of sub-goals that guide it from the start to the goal state. We propose a planning algorithm, Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS), for approximating the optimal plan by means of proposing intermediate sub-goals which hierarchically partition the initial tasks into simpler ones that are then solved independently and recursively. The algorithm critically makes use of a learned sub-goal proposal for finding appropriate partitions trees of new tasks based on prior experience. Different strategies for learning sub-goal proposals give rise to different planning strategies that strictly generalize sequential planning. We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds as well as in challenging continuous control environments.
The most widely used methods for toolpath planning in fused deposition 3D printing slice the input model into successive 2D layers in order to construct the toolpath. Unfortunately slicing-based methods can incur a substantial amount of wasted motion (i.e., the extruder is moving while not printing), particularly when features of the model are spatially separated. In recent years we have introduced a new paradigm that characterizes the space of feasible toolpaths using a dependency graph on the input model, along with several algorithms to search this space for toolpaths that optimize objective functions such as wasted motion or print time. A natural question that arises is, under what circumstances can we efficiently compute an optimal toolpath? In this paper, we give an algorithm for computing fused deposition modeling (FDM) toolpaths that utilizes Monte Carlo Tree Search (MCTS), a powerful general-purpose method for navigating large search spaces that is guaranteed to converge to the optimal solution. Under reasonable assumptions on printer geometry that allow us to compress the dependency graph, our MCTS-based algorithm converges to find the optimal toolpath. We validate our algorithm on a dataset of 75 models and show it performs on par with our previous best local search-based algorithm in terms of toolpath quality. In prior work we speculated that the performance of local search was near optimal, and we examine in detail the properties of the models and MCTS executions that lead to better or worse results than local search.
Active Reinforcement Learning (ARL) is a twist on RL where the agent observes reward information only if it pays a cost. This subtle change makes exploration substantially more challenging. Powerful principles in RL like optimism, Thompson sampling, and random exploration do not help with ARL. We relate ARL in tabular environments to Bayes-Adaptive MDPs. We provide an ARL algorithm using Monte-Carlo Tree Search that is asymptotically Bayes optimal. Experimentally, this algorithm is near-optimal on small Bandit problems and MDPs. On larger MDPs it outperforms a Q-learner augmented with specialised heuristics for ARL. By analysing exploration behaviour in detail, we uncover obstacles to scaling up simulation-based algorithms for ARL.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا