Do you want to publish a course? Click here

Brainstorming Generative Adversarial Networks (BGANs): Towards Multi-Agent Generative Models with Distributed Private Datasets

201   0   0.0 ( 0 )
 Added by Aidin Ferdowsi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To achieve a high learning accuracy, generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space. However, in many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own. In such scenarios, the local datasets are inherently private and agents often do not wish to share them. In this paper, to address this multi-agent GAN problem, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner and preserving their data privacy. BGAN allows the agents to gain information from other agents without sharing their real datasets but by brainstorming via the sharing of their generated data samples. In contrast to existing distributed GAN solutions, the proposed BGAN architecture is designed to be fully distributed, and it does not need any centralized controller. Moreover, BGANs are shown to be scalable and not dependent on the hyperparameters of the agents deep neural networks (DNNs) thus enabling the agents to have different DNN architectures. Theoretically, the interactions between BGAN agents are analyzed as a game whose unique Nash equilibrium is derived. Experimental results show that BGAN can generate real-like data samples with higher quality and lower Jensen-Shannon divergence (JSD) and Frechet Inception distance (FID) compared to other distributed GAN architectures.



rate research

Read More

A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of Federated Learning to GANs, using the MNIST and CIFAR10 datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better performances than federated learning on both datasets. We finally discuss the practical implications of distributing GANs.
We propose MAD-GAN, an intuitive generalization to the Generative Adversarial Networks (GANs) and its conditional variants to address the well known problem of mode collapse. First, MAD-GAN is a multi-agent GAN architecture incorporating multiple generators and one discriminator. Second, to enforce that different generators capture diverse high probability modes, the discriminator of MAD-GAN is designed such that along with finding the real and fake samples, it is also required to identify the generator that generated the given fake sample. Intuitively, to succeed in this task, the discriminator must learn to push different generators towards different identifiable modes. We perform extensive experiments on synthetic and real datasets and compare MAD-GAN with different variants of GAN. We show high quality diverse sample generations for challenging tasks such as image-to-image translation and face generation. In addition, we also show that MAD-GAN is able to disentangle different modalities when trained using highly challenging diverse-class dataset (e.g. dataset with images of forests, icebergs, and bedrooms). In the end, we show its efficacy on the unsupervised feature representation task. In Appendix, we introduce a similarity based competing objective (MAD-GAN-Sim) which encourages different generators to generate diverse samples based on a user defined similarity metric. We show its performance on the image-to-image translation, and also show its effectiveness on the unsupervised feature representation task.
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and therefore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not.
The standard practice in Generative Adversarial Networks (GANs) discards the discriminator during sampling. However, this sampling method loses valuable information learned by the discriminator regarding the data distribution. In this work, we propose a collaborative sampling scheme between the generator and the discriminator for improved data generation. Guided by the discriminator, our approach refines the generated samples through gradient-based updates at a particular layer of the generator, shifting the generator distribution closer to the real data distribution. Additionally, we present a practical discriminator shaping method that can smoothen the loss landscape provided by the discriminator for effective sample refinement. Through extensive experiments on synthetic and image datasets, we demonstrate that our proposed method can improve generated samples both quantitatively and qualitatively, offering a new degree of freedom in GAN sampling.
174 - Depeng Xu , Shuhan Yuan , Lu Zhang 2018
Fairness-aware learning is increasingly important in data mining. Discrimination prevention aims to prevent discrimination in the training data before it is used to conduct predictive analysis. In this paper, we focus on fair data generation that ensures the generated data is discrimination free. Inspired by generative adversarial networks (GAN), we present fairness-aware generative adversarial networks, called FairGAN, which are able to learn a generator producing fair data and also preserving good data utility. Compared with the naive fair data generation models, FairGAN further ensures the classifiers which are trained on generated data can achieve fair classification on real data. Experiments on a real dataset show the effectiveness of FairGAN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا