No Arabic abstract
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.
Topological insulator (TI) nanoribbons (NRs) provide a unique platform for investigating quantum interference oscillations combined with topological surface states. One-dimensional subbands formed along the perimeter of a TI NR can be modulated by an axial magnetic field, exhibiting Aharonov-Bohm (AB) and Altshuler-Aronov-Spivak (AAS) oscillations of magnetoconductance (MC). Using Sb-doped Bi2Se3 TI NRs, we found that the relative amplitudes of the two quantum oscillations can be tuned by varying the channel length, exhibiting crossover from quasi-ballistic to diffusive transport regimes. The AB and AAS oscillations were discernible even for a 70 micrometer long channel, while only the AB oscillations were observed for a short channel. Analyses based on ensemble-averaged fast Fourier transform of MC curves revealed exponential temperature dependences of the AB and AAS oscillations, from which the circumferential phase-coherence length and thermal length were obtained. Our observations indicate that the channel length in a TI NR can be a useful control knob for tailored quantum interference oscillations, especially for developing topological hybrid quantum devices.
Topological insulator nanoribbons (TI NRs) provide a useful platform to explore the phase-coherent quantum electronic transport of topological surface states, which is crucial for the development of topological quantum devices. When applied with an axial magnetic field, the TI NR exhibits magnetoconductance (MC) oscillations with a flux period of h/e, i.e., Aharonov-Bohm (AB) oscillations, and h/2e, i.e., Altshuler-Aronov-Spivak (AAS) oscillations. Herein, we present an extensive study of the AB and AAS oscillations in Sb doped Bi$_2$Se$_3$ TI NR as a function of the gate voltage, revealing phase-alternating topological AB oscillations. Moreover, the ensemble-averaged fast Fourier transform analysis on the Vg dependent MC curves indicates the suppression of the quantum interference oscillation amplitudes near the Dirac point, which is attributed to the suppression of the phase coherence length within the low carrier density region. The weak antilocalization analysis on the perpendicular MC curves confirms the idea of the suppressed coherence length near the Dirac point in the TI NR.
We present a method for fabricating Josephson junctions and superconducting quantum interference devices (SQUIDs) which is based on the local anodization of niobium strip lines 3 to 6.5 nm-thick under the voltage-biased tip of an Atomic Force Microscope. Microbridge junctions and SQUID loops are obtained either by partial or total oxidation of the niobium layer. Two types of weak link geometries are fabricated : lateral constriction (Dayem bridges) and variable thickness bridges. SQUIDs based on both geometries show a modulation of the maximum Josephson current with a magnetic flux periodic with respect to the superconducting flux quantum h/2e. They persist up to 4K. The modulation shape and depth for SQUIDs based on variable thickness bridges indicate that the weak link size becomes comparable to the superconducting film coherence length which is of the order of 10nm.
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and thus to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak antilocalization and the weak links of the SQUID fully-gapped proximity induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2$pi$ periodicity, possibly dominated by the bulk conductivity.
Josephson weak links made of two-dimensional topological insulators (TIs) exhibit magnetic oscillations of the supercurrent that are reminiscent of those in superconducting quantum interference devices (SQUIDs). We propose a microscopic theory of this effect that goes beyond the approaches based on the standard SQUID theory. For long junctions we find a temperature-driven crossover from Phi_0-periodic SQUID-like oscillations to a 2 Phi_0-quasiperiodic interference pattern with different peaks at even and odd values of the magnetic flux quantum Phi_0=ch/2e. This behavior is absent in short junctions where the main interference signal occurs at zero magnetic field. Both types of interference patterns reveal gapless (protected) Andreev bound states. We show, however, that the usual sawtooth current-flux relationship is profoundly modified by a Doppler-like effect of the shielding current which has been overlooked previously. Our findings may explain recently observed even-odd interference patterns in InAs/GaSb-based TI Josephson junctions and uncover unexplored operation regimes of nano-SQUIDs.