Do you want to publish a course? Click here

Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured Potential Barriers and Interactions

64   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases under current experimental conditions achieved for polar molecules. The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers to strongly enhance energy scales and, therefore, relax temperature requirements for observing new quantum phases of engineered many-body systems. We consider and compare two approaches. In the first, nanoscale barriers are generated with standing wave optical light fields exploiting optical nonlinearities. In the second, static electric field gradients in combination with microwave dressing are used to write nanostructured spatial patterns on the induced electric dipole moments, and thus dipolar interactions. We study the formation of inter-layer and interface bound states of molecules in these configurations, and provide detailed estimates for binding energies and expected losses for present experimental setups.



rate research

Read More

246 - John Sous , Edward Grant 2018
The exploration of large-scale many-body phenomena in quantum materials has produced many important experimental discoveries, including novel states of entanglement, topology and quantum order as found for example in quantum spin ices, topological insulators and semimetals, complex magnets, and high-$T_c$ superconductors. Yet, the sheer scale of solid-state systems and the difficulty of exercising exacting control of their quantum mechanical degrees of freedom limit the pace of rational progress in advancing the properties of these and other materials. With extraordinary effort to counteract natural processes of dissipation, precisely engineered ultracold quantum simulators could point the way to exotic new materials. Here, we look instead to the quantum mechanical character of the arrested state formed by a quenched ultracold molecular plasma. This novel class of system arises spontaneously, without a deliberate engineering of interactions, and evolves naturally from state-specified initial conditions, to a long-lived final state of canonical density, in a process that conflicts with classical notions of plasma dissipation and neutral dissociation. We take information from experimental observations to develop a conceptual argument that attempts to explain this state of arrested relaxation in terms of a minimal phenomenological model of randomly interacting dipoles of random energies. This model of the plasma forms a starting point to describe its observed absence of relaxation in terms of many-body localization (MBL). The large number of accessible Rydberg and excitonic states gives rise to an unconventional web of many-body interactions that vastly exceeds the complexity of MBL in a conventional few-level scheme. This experimental platform thus opens an avenue for the coupling of dipoles in disordered environments that will demand the development of new theoretical tools.
104 - Bryce Gadway , Bo Yan 2016
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-noise limited absorption imaging on a strong bound-bound molecular transition. We present a systematic characterization of this imaging technique. Using this technique combined with time-of-flight (TOF) expansion, we demonstrate the capability to determine momentum and spatial distributions for the molecular gas. We anticipate that this imaging technique will be a powerful tool for studying molecular quantum gases.
Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, in order to reach the longest possible coherence times. Here, we fully characterise the dominant mechanisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal an unexpected differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarised trap light and the applied magnetic field to a magic angle of $arccos{(1/sqrt{3})}approx55^{circ}$. This leads to a coherence time exceeding 6.9 s (90% confidence level). Our results unlock the potential of ultracold molecules as a platform for quantum computation.
We review the recent developments and the current status in the field of quantum-gas cavity QED. Since the first experimental demonstration of atomic self-ordering in a system composed of a Bose-Einstein condensate coupled to a quantized electromagnetic mode of a high-$Q$ optical cavity, the field has rapidly evolved over the past decade. The composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians, as well as to realize non-equilibrium many-body phenomena beyond conventional condensed-matter scenarios. This hinges on the unique possibility to design and control in open quantum environments photon-induced tunable-range interaction potentials for the atoms using tailored pump lasers and dynamic cavity fields. Notable examples range from Hubbard-like models with long-range interactions exhibiting a lattice-supersolid phase, over emergent magnetic orderings and quasicrystalline symmetries, to the appearance of dynamic gauge potentials and non-equilibrium topological phases. Experiments have managed to load spin-polarized as well as spinful quantum gases into various cavity geometries and engineer versatile tunable-range atomic interactions. This led to the experimental observation of spontaneous discrete and continuous symmetry breaking with the appearance of soft-modes as well as supersolidity, density and spin self-ordering, dynamic spin-orbit coupling, and non-equilibrium dynamical self-ordered phases among others. In addition, quantum-gas--cavity setups offer new platforms for quantum-enhanced measurements. In this review, starting from an introduction to basic models, we pedagogically summarize a broad range of theoretical developments and put them in perspective with the current and near future state-of-art experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا