Do you want to publish a course? Click here

Rapid Detection of Hot-spot by Tensor Decomposition with Application to Weekly Gonorrhea Data

90   0   0.0 ( 0 )
 Added by Hao Yan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In many bio-surveillance and healthcare applications, data sources are measured from many spatial locations repeatedly over time, say, daily/weekly/monthly. In these applications, we are typically interested in detecting hot-spots, which are defined as some structured outliers that are sparse over the spatial domain but persistent over time. In this paper, we propose a tensor decomposition method to detect when and where the hot-spots occur. Our proposed methods represent the observed raw data as a three-dimensional tensor including a circular time dimension for daily/weekly/monthly patterns, and then decompose the tensor into three components: smooth global trend, local hot-spots, and residuals. A combination of LASSO and fused LASSO is used to estimate the model parameters, and a CUSUM procedure is applied to detect when and where the hot-spots might occur. The usefulness of our proposed methodology is validated through numerical simulation and a real-world dataset in the weekly number of gonorrhea cases from $2006$ to $2018$ for $50$ states in the United States.



rate research

Read More

133 - Yujie Zhao , Hao Yan , Sarah Holte 2020
We propose an efficient statistical method (denoted as SSR-Tensor) to robustly and quickly detect hot-spots that are sparse and temporal-consistent in a spatial-temporal dataset through the tensor decomposition. Our main idea is first to build an SSR model to decompose the tensor data into a Smooth global trend mean, Sparse local hot-spots, and Residuals. Next, tensor decomposition is utilized as follows: bases are introduced to describe within-dimension correlation, and tensor products are used for between-dimension interaction. Then, a combination of LASSO and fused LASSO is used to estimate the model parameters, where an efficient recursive estimation procedure is developed based on the large-scale convex optimization, where we first transform the general LASSO optimization into regular LASSO optimization and apply FISTA to solve it with the fastest convergence rate. Finally, a CUSUM procedure is applied to detect when and where the hot-spot event occurs. We compare the performance of the proposed method in a numerical simulation study and a real-world case study, which contains a dataset including a collection of three types of crime rates for U.S. mainland states during the year 1965-2014. In both cases, the proposed SSR-Tensor is able to achieve the fast detection and accurate localization of the hot-spots.
We develop a new methodology for spatial regression of aggregated outputs on multi-resolution covariates. Such problems often occur with spatial data, for example in crop yield prediction, where the output is spatially-aggregated over an area and the covariates may be observed at multiple resolutions. Building upon previous work on aggregated output regression, we propose a regression framework to synthesise the effects of the covariates at different resolutions on the output and provide uncertainty estimation. We show that, for a crop yield prediction problem, our approach is more scalable, via variational inference, than existing multi-resolution regression models. We also show that our framework yields good predictive performance, compared to existing multi-resolution crop yield models, whilst being able to provide estimation of the underlying spatial effects.
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the measurements present numerous missing data, censoring and outliers. We propose a method based on an auto-regressive model adapted to censored data with outliers. Inference and prediction are produced via a discretised smoother. This method is both validated on simulations and on real data from Obepine. The proposed method is used to denoise measurements from the quantification of the SARS-CoV-2 E gene in wastewater by RT-qPCR. The resulting smoothed signal shows a good correlation with other epidemiological indicators and an estimate of the whole system noise is produced.
98 - Chen Xu , Yao Xie 2021
We develop a distribution-free, unsupervised anomaly detection method called ECAD, which wraps around any regression algorithm and sequentially detects anomalies. Rooted in conformal prediction, ECAD does not require data exchangeability but approximately controls the Type-I error when data are normal. Computationally, it involves no data-splitting and efficiently trains ensemble predictors to increase statistical power. We demonstrate the superior performance of ECAD on detecting anomalous spatio-temporal traffic flow.
Motivated by the analysis of high-dimensional neuroimaging signals located over the cortical surface, we introduce a novel Principal Component Analysis technique that can handle functional data located over a two-dimensional manifold. For this purpose a regularization approach is adopted, introducing a smoothing penalty coherent with the geodesic distance over the manifold. The model introduced can be applied to any manifold topology, can naturally handle missing data and functional samples evaluated in different grids of points. We approach the discretization task by means of finite element analysis and propose an efficient iterative algorithm for its resolution. We compare the performances of the proposed algorithm with other approaches classically adopted in literature. We finally apply the proposed method to resting state functional magnetic resonance imaging data from the Human Connectome Project, where the method shows substantial differential variations between brain regions that were not apparent with other approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا