Do you want to publish a course? Click here

2MASS J15491331-3539118: a new low-mass wide companion of the GQ Lup system

72   0   0.0 ( 0 )
 Added by Juan Manuel Alcala
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Substellar companions at wide separation around stars hosting planets or brown dwarfs (BDs) yet close enough for their formation in the circumstellar disc are of special interest. In this letter we report the discovery of a wide (projected separation $sim$16.0arcsec, or 2400 AU, and position angle 114.61$^circ$) companion of the GQ Lup A-B system, most likely gravitationally bound to it. A VLT/X-Shooter spectrum shows that this star, 2MASS J15491331-3539118, is a bonafide low-mass ($sim$0.15 M$_odot$) young stellar object (YSO) with stellar and accretion/ejection properties typical of Lupus YSOs of similar mass, and with kinematics consistent with that of the GQ Lup A-B system. A possible scenario for the formation of the triple system is that GQ Lup A and 2MASS J15491331-3539118 formed by fragmentation of a turbulent core in the Lup I filament, while GQ Lup B, the BD companion of GQ Lup A at 0.7arcsec, formed in situ by the fragmentation of the circumprimary disc. The recent discoveries that stars form along cloud filaments would favour the scenario of turbulent fragmentation for the formation of GQ Lup A and 2MASS J15491331-3539118.



rate research

Read More

Very recently, a second companion on wider orbit has been discovered around GQ Lup. This is a low-mass accreting star partially obscured by a disk seen at high inclination. If detected, this disk may be compared to the known disk around the primary. We detected this disk on archive HST and WISE data. The extended spectral energy distribution provided by these data confirms the presence of accretion from Halpha emission and UV excess, and shows an IR excess attributable to a warm disk. In addition, we resolved the disk on the HST images. This is found to be roughly aligned with the disk of the primary. Both of them are roughly aligned with the Lupus I dust filament containing GQ Lup.
We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 $mu$m continuum and CO J=3-2 line emission with beam size $sim0.3$ ($sim45$ AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The circumprimary dust disk is compact with a FWHM of $59pm12$ AU, while the gas has a larger extent with a characteristic radius of $46.5pm1.8$ AU. By forward-modeling the velocity field of the circumprimary disk based on the CO emission, we constrain the mass of GQ Lup A to be $M_* = (1.03pm0.05)*(d/156text{ pc})$ $M_odot$, where $d$ is a known distance, and determine that we view the disk at an inclination angle of $60.5^circpm0.5^circ$ and a position angle of $346^circ pm1^circ$. The $3sigma$ upper limit on the 870 $mu$m flux density of any circumplanetary disk associated with GQ Lup b of $<0.15$ mJy implies an upper limit on the dust disk mass of $<0.04$ $M_oplus$ for standard assumptions about optically thin emission. We discuss proposed mechanisms for the formation of wide-separation substellar companions given the non-detection of circumplanetary disks around GQ Lup b and other similar systems.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
We present the discovery of a low-mass comoving system found by means of the NOIRLab Source Catalog (NSC) DR2. The system consists of the high proper-motion star LEHPM 5005 and an ultracool companion 2MASS J22410186-4500298 with an estimated spectral type of L2. The primary (LEHPM 5005) is likely a mid-M dwarf but over-luminous for its color, indicating a possible close equal mass binary. According to the Gaia EDR3 parallax of the primary, the system is located at a distance of $58pm2$ pc. We calculated an angular separation of 7.2 between both components, resulting in a projected physical separation of 418 AU.
353 - C. Ginski , F. Menard , Ch. Rab 2020
To understand the formation of planetary systems, one needs to understand the initial conditions of planet formation, i.e. the young gas-rich planet forming disks. Spatially resolved high-contrast observations are of particular interest, since substructures in disks, linked to planet formation, can be detected and close companions or even planets in formation embedded in the disk can be revealed. In this study we present the first result of the DESTINYS survey (Disk Evolution Study Through Imaging of Nearby Young Stars). DESTINYS is an ESO/SPHERE large program that aims at studying disk evolution in scattered light, mainly focusing on a sample of low-mass stars (<1$M_odot$) in nearby (~200 pc) star-forming regions. In this particular study we present the observations of the ET Cha (RECX 15) system, a nearby old classical T Tauri star (5-8 Myr, ~100 pc), which is still strongly accreting. We use SPHERE/IRDIS in H-band polarimetric imaging mode to obtain high contrast images of the ET Cha system to search for scattered light from the circumstellar disk as well as thermal emission from close companions. We additionally employ VLT/NACO total intensity archival data taken in 2003. We report here the discovery of a low-mass (sub)stellar companion with SPHERE/IRDIS to ET Cha. We are estimating the mass of this new companion based on photometry. Depending on the system age it is a 5 Myr, 50 $M_{Jup}$ brown dwarf or an 8 Myr, 0.10 $M_odot$ M-type pre-main-sequence star. We explore possible orbital solutions and discuss the recent dynamic history of the system. Independent of the precise companion mass we find that the presence of the companion likely explains the small size of the disk around ET Cha. The small separation of the binary pair indicates that the disk around the primary component is likely clearing from the outside in, explaining the high accretion rate of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا