Do you want to publish a course? Click here

Majorana versus Andreev bound state energy oscillations in a 1D semiconductor-superconductor heterostructure

109   0   0.0 ( 0 )
 Added by Girish Sharma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent experimental observations of decaying energy oscillations in semiconductor-superconductor Majorana nanowires is in contrast with the typical expectations based on the presence of Majorana zero modes localized at the ends of the system, when the amplitude of the hybridization energy oscillations is predicted to increase with the applied magnetic field. These observations have been theoretically justified recently by considering a position-dependent, step-like spin-orbit coupling near end of the nanowire, which could arise due to the presence of tunnel gates in a standard tunneling conductance experiment. Here, we show that the window in parameter space where this phenomenology occurs is vanishingly small, when compared to the parameter region where Majorana oscillations increase in amplitude with the applied field. Further, including a position-dependent effective potential, which is also induced naturally near the end of the wire by, e.g., tunnel gates, practically removes the small window associated with decaying oscillations. Using extensive numerical calculations, we show that, as expected, increasing amplitude oscillations of the hybridization energy represent a generic property of topological Majorana zero modes, while decreasing amplitude oscillations are a generic property of low-energy trivial Andreev bound states that typically emerge in non-homogeneous systems. By averaging over several realistic parameter configurations, we identify robust features of the hybridization energy that can be observed in a typical differential conductance experiment without fine-tuning the control parameters.



rate research

Read More

Transport studies of Andreev bound states (ABSs) are complicated by the interplay of charging effects and superconductivity. Here, we compare transport approaches to ABS spectroscopy in a semiconductor-superconductor island to a charge-sensing approach based on an integrated radio-frequency single-electron transistor. Consistency of the methods demonstrates that fast, non-invasive charge sensing allows accurate quantitative measurement of ABSs while eluding some complexities of transport.
We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to $3$~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transition): one is characterized by finite-energy in-gap Andreev bound states, while the other has only extended bulk states. The Andreev bound state regime is characterized by strong features in the tunneling spectra creating a gap closure signature, but no gap reopening signature should be apparent above the topological quantum phase transition, in agreement with most recent experimental observations. The gap closure feature is actually the coming together of the Andreev bound states at high chemical potential rather than a simple trivial gap of extended bulk states closing at the transition. Our theoretical finding establishes the generic intrinsic Andreev bound states on the trivial side of the topological quantum phase transition as the main contributors to the tunneling conductance spectra, providing a generic interpretation of existing experiments in clean Majorana nanowires. Our work also explains why experimental tunnel conductance spectra generically have gap closing features below the topological quantum phase transition, but no gap opening features above it.
We consider a biased Normal-Superconducting junction with various types of superconductivity. Depending on the class of superconductivity, a Majorana bound state may appear at the interface. We show that this has important consequences on the distribution of waiting times of electrons flowing out of such an interface. Therefore, the waiting time distribution is shown to be a clear fingerprint of Majorana bound state physics and may be considered as an experimental signature of its presence.
We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا