Do you want to publish a course? Click here

Characterisation of SiPM radiation hardness for application in hadron calorimeters at FAIR, CERN and NICA

122   0   0.0 ( 0 )
 Added by Vasily Mikhaylov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Silicon PhotoMultipliers (SiPM) are an excellent choice for the scintillator light readout at hadron calorimeters due to their insensitivity to magnetic fields, low operating voltages, low cost, compactness and mechanical endurance. They are already successfully utilized in Projectile Spectator Detector (PSD) of NA61 at CERN, and will be utilized soon in PSD of CBM at FAIR and Forward Hadron CALorimeters (FHCAL) of BM@N at NICA heavy-ion collision experiments. The main issue of SiPM application is their degradation due to high neutron fluence that can reach up to 2E11 neq/cm2 per year of the experiment operation. Multiple irradiation tests of SiPMs produced by Ketek, Zecotek, Hamamatsu and Sensl manufacturers were conducted at the cyclotron of NPI Rez with a broad neutron spectrum and total fluences in the wide range of 5E10 - 6E12 neq/cm2. Detailed characterisation of all SiPMs was performed based on dependencies of dark current on voltage, capacitance on voltage and frequency, and response to LED light on voltage. SiPMs breakdown voltage, quenching resistance, pixel capacitance, gain and signal to noise ratio were extracted from these measurements. Those parameters dependence on neutron fluence and their variability are discussed. Performance of the PSD calorimeter module equipped with irradiated SiPMs in CERN during the beam scan with 2 - 80 GeV/c protons is briefly overviewed.



rate research

Read More

The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons and nucleons in pi, K and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consist of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.
This paper presents the results of the proton irradiation of silicon photomulipliers (SiPMs) by mono-energetic 170 MeV protons with fluence up to 4.6$times$10$^{9}$ particles/cm$^2$. In our work, three types of silicon photodetectors from Hamamatsu with areas 3$times$3 mm$^2$ and different subpixel sizes of 25$times$25 $mu$m$^2$, 50$times$50 $mu$m$^2$, and 75$times$75 $mu$m$^2$ were used. The changes in the SiPM dark count rate (DCR) spectrum before and after irradiation in temperatures in the range of 20 $^circ$C to -65 $^circ$C are presented. The influence of the DCR changes on the energy resolution of the 662 keV gamma line from the $^{137}$Cs for a non-irradiated GAGG:Ce (1$%$) scintillator is investigated. The time period of usability of the SiPM detector irradiated by protons in cosmic space was estimated.
The high-luminosity LHC (HL-LHC) upgrade is setting now a new challenge for particle detector technologies. The increase in luminosity will produce a particle background in the gas-based muon detectors that is ten times higher than under conditions at the LHC. The detailed knowledge of the detector performance in the presence of such a high background is crucial for an optimized design and efficient operation after the HL-LHC upgrade. A precise understanding of possible aging effects of detector materials and gases is of extreme importance. To cope with these challenging requirements, a new Gamma Irradiation Facility (GIF++) was designed and built at the CERN SPS North Area as successor of the Gamma Irradiation Facility (GIF) during the Long Shutdown 1 (LS1) period. It features an intense source of 662 keV photons with adjustable intensity, to simulate continuous background over large areas, and, combined with a high energy muon beam, to measure detector performance in the presence of the background. The new GIF++ facility has been operational since spring 2015. In addition to describing the facility and its infrastructure, the goal of this work is to provide an extensive characterization of the GIF++ photon field with different configurations of the absorption filters in both the upstream and downstream irradiation areas. Moreover, the measured results are benchmarked with Geant4 simulations to enhance the knowledge of the radiation field. The absorbed dose in air in the facility may reach up to 2.2 Gy/h directly in front of the irradiator. Of special interest is the low-energy photon component that develops due to the multiple scattering of photons within the irradiator and from the concrete walls of the bunker.
130 - T. Rohe , A. Bean , W. Erdmann 2010
Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.
The Multi-Purpose Detector (MPD) is designed to study a hot and dense baryonic matter formed in heavy-ion collisions at SQRT(sNN)=4-11 GeV at the NICA accelerator complex (Dubna, Russia). Large-sized electromagnetic calorimeter (ECal) of the MPD spectrometer will provide precise spatial and energy measurements for photons and electrons in the central pseudorapidity region of |eta|<1.2. The Shashlyk-type sampling structure of the ECal is optimized for the photons energy range from about 40 MeV to 2-3 GeV. Fine segmentation and projective geometry of the calorimeter allow to deal with high multiplicity of secondary particles from Au-Au reactions. In this talk, we report on a design, a construction status and expected parameters of the ECal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا