Do you want to publish a course? Click here

Business Process Full Compliance with Respect to a Set of Conditional Obligation in Polynomial Time

61   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we present a new methodology to evaluate whether a business process model is fully compliant with a regulatory framework composed of a set of conditional obligations. The methodology is based failure delta-constraints that are evaluated on bottom-up aggregations of a tree-like representation of business process models. While the generic problem of proving full compliance is in coNP-complete, we show that verifying full compliance can be done in polynomial time using our methodology, for an acyclic structured process model given a regulatory framework composed by a set of conditional obligations, whose elements are restricted to be represented by propositional literals



rate research

Read More

We give an $n^{O(loglog n)}$-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over ${pm 1}^n$. Even in the realizable setting, the previous fastest runtime was $n^{O(log n)}$, a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of ODonnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be pruned so that every variable in the resulting tree is influential.
Dealing with the NP-complete Dominating Set problem on undirected graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set restricted to planar graphs has a so-called problem kernel of linear size, achieved by two simple and easy to implement reduction rules. Moreover, having implemented our reduction rules, first experiments indicate the impressive practical potential of these rules. Thus, this work seems to open up a new and prospective way how to cope with one of the most important problems in graph theory and combinatorial optimization.
The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time.
The problem of finding a common refinement of a set of rooted trees with common leaf set $L$ appears naturally in mathematical phylogenetics whenever poorly resolved information on the same taxa from different sources is to be reconciled. This constitutes a special case of the well-studied supertree problem, where the leaf sets of the input trees may differ. Algorithms that solve the rooted tree compatibility problem are of course applicable to this special case. However, they require sophisticated auxiliary data structures and have a running time of at least $O(k|L|log^2(k|L|))$ for $k$ input trees. Here, we show that the problem can be solved in $O(k|L|)$ time using a simple bottom-up algorithm called LinCR. An implementation of LinCR in Python is freely available at https://github.com/david-schaller/tralda.
For graphs $G$ and $H$, we say that $G$ is $H$-free if it does not contain $H$ as an induced subgraph. Already in the early 1980s Alekseev observed that if $H$ is connected, then the textsc{Max Weight Independent Set} problem (MWIS) remains textsc{NP}-hard in $H$-free graphs, unless $H$ is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in $H$-free graphs, where $H$ is any fixed path. If $H$ is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw $H$, MWIS is polynomial-time solvable in $H$-free graphs of bounded degree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا