No Arabic abstract
Directly imaging the configurations of small molecules at the ambient temperatures will greatly promote the study of their chemical and physical properties, including the host-guest interactions of organics in porous materials during the adsorption, catalysis and energy storage. However, due to the current challenges on the small-molecule imaging by the (scanning) transmission electron microscopy ((S)TEM), we still have a lack of the molecular-level understandings on the host-guest interactions and other molecular behaviors. Here, we achieved the STEM imaging of various small aromatics confined in the MFI-type zeolite frameworks by using the integrated differential phase contrast (iDPC) technique. Due to the strong confinement effect in MFI channels, the 1D solid-like aromatic columns showed the coherent configurations, which were clearly resolved by enhancing the host-guest interactions. Then, we also evaluated the strength of host-guest interactions directly by the image analysis and revealed the desorption behaviors of confined aromatics during the in-situ heating process. These results not only helped us to reveal the configurations and host-guest interactions of small aromatics during the adsorption/desorption in porous materials, but also expanded the applications of STEM to further study other molecular behaviors in the real space.
We have investigated the equilibrium states of ferromagnetic single wall nanotubes by means of atomistic Monte Carlo simulations of a zig-zag lattice of Heisenberg spins on the surface of a cylinder. The main focus of our study is to determine how the competition between short-range exchange (J) and long-range dipolar (D) interactions influences the low temperature magnetic order of the nanotubes as well as the thermal-driven transitions involved. Apart from the uniform and vortex states occurring for dominant J or D, we find that helical states become stable for a range of intermediate values of g = D=J that depends on the radius and length of the nanotube. Introducing a vorticity order parameter to better characterize helical and vortex states, we find the pseudo-critical temperatures for the transitions between these states and we establish the magnetic phase diagrams of their stability regions as a function of the nanotube aspect ratio. Comparison of the energy of the states obtained by simulation with those of simpler theoretical structures that interpolate continuously between them, reveals a high degree of metastability of the helical structures that might be relevant for their reversal modes.
One of the main applications of atomistic computer simulations is the calculation of ligand binding energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obstacle in modern simulations due to the frequent appearance of kinetic bottlenecks in the free energy landscape. Very often this difficulty is circumvented by enhanced sampling techniques. Typically, these techniques depend on the introduction of appropriate collective variables that are meant to capture the systems degrees of freedom. In ligand binding, water has long been known to play a key role, but its complex behaviour has proven difficult to fully capture. In this paper we combine machine learning with physical intuition to build a non-local and highly efficient water-describing collective variable. We use it to study a set of of host-guest systems from the SAMPL5 challenge. We obtain highly accurate binding energies and good agreement with experiments. The role of water during the binding process is then analysed in some detail.
High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high-spatial resolution. Using ErMnO3 as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contract-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.
Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in micro/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex based information processing and spintronic devices. All previous studies have focused on magnetic vortex-core switching via external magnetic fields, spin-polarized currents, or spin waves, which have largely prohibited the investigation of novel spin configurations that could emerge from the ground states in ferromagnetic disks and their underlying dynamics. Here, we report in situ visualization of femtosecond laser quenching induced magnetic vortex change in various symmetric ferromagnetic Permalloy disks by Lorentz phase imaging using 4D electron microscopy. Besides the switching of magnetic vortex chirality and polarity, we observed with distinct occurrence frequencies a plenitude of complex magnetic structures that have never been observed by magnetic field or current assisted switching. These complex magnetic structures consist of a number of newly created topological magnetic defects (vortex and antivortex) strictly conserving the topological winding number, demonstrating the direct impact of topological invariant on the magnetization dynamics in ferromagnetic disks. Their spin configurations show mirror or rotation symmetry due to the geometrical confinement of the disks. Combined micromagnetic simulations with the experimental observations reveal the underlying magnetization dynamics and formation mechanism of the optical quenching induced complex magnetic structures. Their distinct occurrence rates are pertinent to their formation-growth energetics and pinning effects at the disk edge. Based on these findings, we propose a paradigm of optical-quenching-assisted fast switching of vortex cores for the control of magnetic vortex based information recording and spintronic devices.
The progress of semiconductor electronics toward ever-smaller length scales and associated higher power densities brings a need for new high-resolution thermal microscopy techniques. Traditional thermal microscopy is performed by detecting infrared radiation with far-field optics, where the resolution is limited by the wavelength of the light. By adopting a serial, local-probe approach, near-field and scanned-probe microscopies can surpass this limit but sacrifice imaging speed. In the same way that electron microscopy was invented to overcome the resolution limits of light microscopy, we here demonstrate a thermal imaging technique that uses an electron microscope to overcome the limits of infrared thermal microscopy, without compromising imaging speed. With this new technique, which we call electron thermal microscopy, temperature is resolved by detecting the liquid-solid transition of arrays of nanoscale islands, producing thermal maps in real-time (30 thermal images per second over a 16um^2 field-of-view). The experimental demonstration is supported by combined electrical and thermal modeling.