Do you want to publish a course? Click here

Electron Thermal Microscopy

149   0   0.0 ( 0 )
 Added by Todd Brintlinger
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The progress of semiconductor electronics toward ever-smaller length scales and associated higher power densities brings a need for new high-resolution thermal microscopy techniques. Traditional thermal microscopy is performed by detecting infrared radiation with far-field optics, where the resolution is limited by the wavelength of the light. By adopting a serial, local-probe approach, near-field and scanned-probe microscopies can surpass this limit but sacrifice imaging speed. In the same way that electron microscopy was invented to overcome the resolution limits of light microscopy, we here demonstrate a thermal imaging technique that uses an electron microscope to overcome the limits of infrared thermal microscopy, without compromising imaging speed. With this new technique, which we call electron thermal microscopy, temperature is resolved by detecting the liquid-solid transition of arrays of nanoscale islands, producing thermal maps in real-time (30 thermal images per second over a 16um^2 field-of-view). The experimental demonstration is supported by combined electrical and thermal modeling.



rate research

Read More

In this study, we have used a Zr-Nb alloy containing well-defined nano-precipitates as a model material in which to study imaging contrast
Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron microscopy images. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.
190 - B. Gamm 2010
Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner scattering factors. Experimental and simulated intensities are in full agreement on an absolute scale.
356 - B.Gamm , M. Dries , K. Schultheiss 2010
A method is described for the reconstruction of the amplitude and phase of the object exit wave function by phase-plate transmission electron microscopy. The proposed method can be considered as in-line holography and requires three images, taken with different phase shifts between undiffracted and diffracted electrons induced by a suitable phase-shifting device. The proposed method is applicable for arbitrary object exit wave functions and non-linear image formation. Verification of the method is performed for examples of a simulated crystalline object wave function and a wave function acquired with off-axis holography. The impact of noise on the reconstruction of the wave function is investigated.
206 - Steven R. Spurgeon 2020
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precision synthesis techniques, such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD), provide a high degree of control over these systems, there remains a disconnect between ideal and realized materials. Because thin films adopt structures and chemistries distinct from their bulk counterparts, it is often difficult to predict what properties will emerge. The complex energy landscape of the synthesis process is also strongly influenced by non-equilibrium growth conditions imposed by the substrate, as well as the kinetics of thin film crystallization and fluctuations in process variables, all of which can lead to significant deviations from targeted outcomes. High-resolution structural and chemical characterization techniques, as described in this volume, are needed to verify growth models, bound theoretical calculations, and guide materials design. While many characterization options exist, most are spatially-averaged or indirect, providing only partial insight into the complex behavior of these systems. Over the past several decades, scanning transmission electron microscopy (STEM) has become a cornerstone of oxide heterostructure characterization owing to its ability to simultaneously resolve structure, chemistry, and defects at the highest spatial resolution. STEM methods are an essential complement to averaged scattering techniques, offering a direct picture of resulting materials that can inform and refine the growth process to achieve targeted properties. There is arguably no other technique that can provide such a broad array of information at the atomic-scale, all within a single experimental session.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا