No Arabic abstract
Aluminum-germanium nanowires (NWs) thermal activated solid state reaction is a promising system as very sharp and well defined one dimensional contacts can be created between a metal and a semiconductor, that can become a quantum dot if the size becomes sufficiently small. In the search for high performance devices without variability, it is of high interest to allow deterministic fabrication of nanowire quantum dots, avoiding sample variability and obtaining atomic scale precision on the fabricated dot size. In this paper, we present a reliable fabrication process to produce sub-10 nm Ge quantum dots (QDs), using a combination of ex-situ thermal annealing via rapid thermal annealing (RTA) and in-situ Joule heating technique in a transmission electron microscope (TEM). First we present in-situ direct joule heating experiments showing how the heating electrode could be damaged due to the formation of Al crystals and voids at the vicinity of the metal/NW contact, likely related with electro-migration phenomena. We show that the contact quality can be preserved by including an additional ex-situ RTA step prior to the in-situ heating. The in-situ observations also show in real-time how the exchange reaction initiates simultaneously from several locations underneath the Al contact pad, and the Al crystal grows gradually inside the initial Ge NW with the growth interface along a Ge(111) lattice plane. Once the reaction front moves out from underneath the contact metal, two factors jeopardize an atomically accurate control of the Al/Ge reaction interface. We observed a local acceleration of the reaction interface due to the electron beam irradiation in the transmission electron microscope as well as the appearance of large jumps of the interface in unpassivated Ge wires while a smooth advancement of the reaction interface was observed in wires with an Al2O3 protecting shell on the surface. Carefully controlling all aspects of the exchange reaction, we demonstrate a fabrication process combining ex-situ and in-situ heating techniques to precisely control and produce axial Al/Ge/Al NW heterostructures with an ultra-short Ge segment down to 8 nanometers. Practically, the scaling down of Ge segment length is only limited by the microscope resolution.
Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometry. Incorporation of Sn content in the 10-20 at.% range is achieved with Ge core diameters ranging from 50nm to 100nm. While the smaller cores lead to the formation of a regular and homogeneous GeSn shell, larger cores lead to the formation of multi-faceted sidewalls and broadened segregation domains, inducing the nucleation of defects. This behavior is rationalized in terms of the different residual strain, as obtained by realistic finite element method simulations. The extended analysis of the strain relaxation as a function of core and shell sizes, in comparison with the conventional planar geometry, provides a deeper understanding of the role of strain in the epitaxy of metastable GeSn semiconductors.
We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy (MBE) at 220 {deg}C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Three growth orientations were observed on Ge (110) by the VSS growth at 220 {deg}C, differing from only one growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained via analyzing the mechanism of the two growth modes.
While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopant atoms into the substitutional positions in the matrix and improve the device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a reversible thermal diffusion process occurring in the solid-state exchange reaction between an Al metal pad and a Si$_x$Ge$_{1-x}$ alloy nanowire observed by in-situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted SixGe1-x part, forming an axial Al/Si/Si$_x$Ge$_{1-x}$ heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si$_x$Ge$_{1-x}$ alloy nanowire while maintaining the rod-like geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts, as well as Si/Si$_x$Ge$_{1-x}$/Si heterostructures for near-infrared sensing applications.
Galvanostatic Intermittent Titration Technique (GITT) is widely used to evaluate solid-state diffusion coefficients in electrochemical systems. However, the existing analysis methods for GITT data require numerous assumptions, and the derived diffusion coefficients typically are not independently validated. To investigate the validity of the assumptions and derived diffusion coefficients, we employ a direct pulse fitting method for interpreting GITT data that involves numerically fitting an electrochemical pulse and subsequent relaxation to a one-dimensional, single-particle, electrochemical model coupled with non-ideal transport to directly evaluate diffusion coefficients that are independently verified through cycling predictions. Extracted from GITT measurements of the intercalation regime of FeS2 and used to predict the discharge behavior, our non-ideal diffusion coefficients prove to be two orders of magnitude more accurate than ideal diffusion coefficients extracted using conventional methods. We further extend our model to a polydisperse set of particles to show the validity of a single-particle approach when the modeled radius is proportional to the total volume-to-surface-area ratio of the system.
Aspects of the preparation process and performance degradation are two major problems of photocathodes. The lack of a means for dynamic quantum efficiency measurements results in the inability to observe the inhomogeneity of the cathode surface by fine structural analysis and in real time.Here we present a simple and scalable technique for in situ real-time quantum efficiency diagnosis. An incoherent light source provides uniform illumination on the cathode surface, and solenoid magnets are used as lens for focusing and imaging the emitted electron beam on a downstream scintillator screen, which converts the quantum efficiency information into fluorescence intensity distribution. The microscopic discontinuity and the dynamic changes of the quantum efficiency of a gallium arsenide photocathode are observed at a resolution of a few microns. An unexpected uneven decrease of the quantum efficiency is also recorded. The work demonstrates a new observation method for photoemission materials research.