No Arabic abstract
For the past 150 years, the prevailing view of the local Interstellar Medium (ISM) was based on a peculiarity known as the Goulds Belt, an expanding ring of young stars, gas, and dust, tilted about 20$^circ$ to the Galactic plane. Still, the physical relation between local gas clouds has remained practically unknown because the distance accuracy to clouds is of the same order or larger than their sizes. With the advent of large photometric surveys and the Gaia satellite astrometric survey this situation has changed. Here we report the 3-D structure of all local cloud complexes. We find a narrow and coherent 2.7 kpc arrangement of dense gas in the Solar neighborhood that contains many of the clouds thought to be associated with the Gould Belt. This finding is inconsistent with the notion that these clouds are part of a ring, disputing the Gould Belt model. The new structure comprises the majority of nearby star-forming regions, has an aspect ratio of about 1:20, and contains about 3 million solar masses of gas. Remarkably, the new structure appears to be undulating and its 3-D distribution is well described by a damped sinusoidal wave on the plane of the Milky Way, with an average period of about 2 kpc and a maximum amplitude of about 160 pc. Our results represent a first step in the revision of the local gas distribution and Galactic structure and offer a new, broader context to studies on the transformation of molecular gas into stars.
The surface density and vertical distribution of stars, stellar remnants, and gas in the solar vicinity form important ingredients for understanding the star formation history of the Galaxy as well as for inferring the local density of dark matter by using stellar kinematics to probe the gravitational potential. In this paper we review the literature for these baryonic components, reanalyze data, and provide tables of the surface densities and exponential scale heights of main sequence stars, giants, brown dwarfs, and stellar remnants. We also review three components of gas (H2, HI, and HII), give their surface densities at the solar circle, and discuss their vertical distribution. We find a local total surface density of M dwarfs of 17.3 pm 2.3 Mo/pc^2. Our result for the total local surface density of visible stars, 27.0 pm 2.7 Mo/pc^2, is close to previous estimates due to a cancellation of opposing effects: more mass in M dwarfs, less mass in the others. The total local surface density in white dwarfs is 4.9 pm 0.6 Mo/pc^2; in brown dwarfs, it is ~1.2 Mo/pc^2. We find that the total local surface density of stars and stellar remnants is 33.4 pm 3 Mo/pc^2, somewhat less than previous estimates. We analyze data on 21 cm emission and absorption and obtain good agreement with recent results on the local amount of neutral atomic hydrogen obtained with the Planck satellite. The local surface density of gas is 13.7 pm 1.6 Mo/pc^2. The total baryonic mass surface density that we derive for the solar neighborhood is 47.1 pm 3.4 Mo/pc^2. Combining these results with others measurements of the total surface density of matter within 1-1.1 kpc of the plane, we find that the local density of dark matter is 0.013 pm 0.003Mo/pc^3.The local density of all matter is 0.097 pm 0.013 Mo/pc^3. We discuss limitations on the properties of a possible thin disk of dark matter.
The radio source J1819+3845 underwent a period of extreme interstellar scintillation between circa 1999 and 2007. The plasma structure responsible for this scintillation was determined to be just $1$-$3,$pc from the solar system and to posses a density of $n_esim 10^2,$cm$^{-3}$ that is three orders of magnitude higher than the ambient interstellar density (de Bruyn & Macquart 2015). Here we present radio-polarimetric images of the field towards J1819+3845 at wavelengths of 0.2, 0.92 and 2$,$m. We detect an elliptical plasma globule of approximate size $1^circ times gtrsim 2^circ$ (major-axis position angle of $approx -40^circ$), via its Faraday-rotation imprint ($approx 15,$rad$,$m$^{-2}$) on the diffuse Galactic synchrotron emission. The extreme scintillation of J1819+3845 was most likely caused at the turbulent boundary of the globule (J1819+3845 is currently occulted by the globule). The origin and precise nature of the globule remain unknown. Our observations are the first time plasma structures that likely cause extreme scintillation have been directly imaged.
We report the discovery of a young (only 30-40,Myr) snake-like structure (dubbed a stellar snake) in the solar neighborhood from {it Gaia} DR2. The average distance of this structure is about 310,pc from us. Both the length and width are over 200,pc, but the thickness is only about 80,pc. The snake has one tail and two dissolving cores, which can be clearly distinguished in the 6D phase space. The whole structure includes thousands of members with a total mass of larger than 2000,$M_{odot}$ in an uniform population. The population is so young that it can not be well explained with the classical theory of tidal tails. We therefore suspect that the snake is hierarchically primordial, rather than the result of dynamically tidal stripping, even if the snake is probably expanding. The coherent 5D phase information and the ages suggest that the snake was probably born in the same environment as the filamentary structure of Beccari et al.(2020). If so, the snake could extend the sky region of the Vela OB2 association by a factor of $sim 2$, and supplement the census of its coeval structures. This finding is useful to understand the history of the formation and evolution of the Vela OB2 complex. The age of the snake well matches with that of the Gould Belt. In the sky region of our interest, we detect one new open cluster, which is named as Tian 1 in this work.
About 20% of stars in the solar vicinity are in the Hercules stream, a bundle of stars that move together with a velocity distinct from the Sun. Its origin is still uncertain. Here, we explore the possibility that Hercules is made of trojans, stars captured at L4, one the Lagrangian points of the stellar bar. Using GALAKOS--a high-resolution N-body simulation of the Galactic disk--we follow the motions of stars in the co-rotating frame of the bar and confirm previous studies on Hercules being formed by stars in co-rotation resonance with the bar. Unlike previous work, we demonstrate that the retrograde nature of trojan orbits causes the asymmetry in the radial velocity distribution, typical of Hercules in the solar vicinity. We show that trojans remain at capture for only a finite amount of time, before escaping L4 without being captured again. We anticipate that in the kinematic plane the Hercules stream will de-populate along the bar major axis and be visible at azimuthal angles behind the solar vicinity with a peak towards L4. This test can exclude the OLR origin of the Hercules stream and be validated by Gaia DR3 and DR4.
White dwarfs are the remnants of low and intermediate mass stars. Because of electron degeneracy, their evolution is just a simple gravothermal process of cooling. Recently, thanks to Gaia data, it has been possible to construct the luminosity function of massive (0.9 < M/Msun < 1.1) white dwarfs in the solar neighborhood (d < 100 pc). Since the lifetime of their progenitors is very short, the birth times of both, parents and daughters, are very close and allow to reconstruct the (effective) star formation rate. This rate started growing from zero during the early Galaxy and reached a maximum 6-7 Gyr ago. It declined and ~5 Gyr ago started to climb once more reaching a maximum 2 - 3 Gyr in the past and decreased since then. There are some traces of a recent star formation burst, but the method used here is not appropriate for recently born white dwarfs.