No Arabic abstract
Lifshitz transition, a change in Fermi surface topology, is likely to greatly influence exotic correlated phenomena in solids, such as high-temperature superconductivity and complex magnetism. However, since the observation of Fermi surfaces is generally difficult in the strongly correlated systems, a direct link between the Lifshitz transition and quantum phenomena has been elusive so far. Here, we report a marked impact of the pressure-induced Lifshitz transition on thermoelectric performance for SnSe, a promising thermoelectric material without strong electron correlation. By applying pressure up to 1.6 GPa, we have observed a large enhancement of thermoelectric power factor by more than 100% over a wide temperature range (10-300 K). Furthermore, the high carrier mobility enables the detection of quantum oscillations of resistivity, revealing the emergence of new Fermi pockets at ~0.86 GPa. The observed thermoelectric properties linked to the multi-valley band structure are quantitatively reproduced by first-principles calculations, providing novel insight into designing the SnSe-related materials for potential valleytronic as well as thermoelectric applications.
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear dispersion, titanic magnetoresistance and unconventional superconductivity. Black phosphorus has recently emerged as an exceptional semiconductor with high carrier mobility and a direct, tunable bandgap. Of particular importance is the search for exotic electronic states in black phosphorus, which may amplify the materials potential beyond semiconductor devices. Here we show that a moderate hydrostatic pressure effectively suppresses the band gap and induces a Lifshitz transition from semiconductor to semimetal in black phosphorus; a colossal magnetoresistance is observed in the semimetallic phase. Quantum oscillations in high magnetic field reveal the complex Fermi surface topology of the semimetallic black phosphorus. In particular, a Dirac-like fermion emerges at around 1.2 GPa, which is continuously tuned by external pressure. The observed semi-metallic behavior greatly enriches black phosphoruss material property, and sets the stage for the exploration of novel electronic states in this material. Moreover, these interesting behaviors make phosphorene a good candidate for the realization of a new two-dimensional relativistic electron system, other than graphene.
The phase diagrams of correlated systems like cuprates or pnictides high-temperature superconductors are characterized by a topological change of the Fermi surface under continuous variation of an external parameter, the so-called Lifshitz transition. However, the large number of low-temperature instabilities and the interplay of multiple energy scales complicate the study of this phenomenon. Here we first identify the optical signatures of a pressure-induced Lifshitz transition in a clean elemental system, black phosphorus. By applying external pressures above 1.5 GPa, we observe a change in the pressure dependence of the Drude plasma frequency due to the appearance of massless Dirac fermions. At higher pressures, optical signatures of two structural phase transitions are also identified. Our findings suggest that a key fingerprint of the Lifshitz transition in solid state systems, and in absence of structural phase transitions, is a discontinuity of the Drude plasma frequency due to the change of Fermi surface topology.
LiOsO$_3$ undergoes a continuous transition from a centrosymmetric $Rbar{3}c$ structure to a polar $R3c$ structure at $T_s=140$~K. By combining transport measurements and first-principles calculations, we find that $T_s$ is enhanced by applied pressure, and it reaches a value of $sim$250~K at $sim$6.5~GPa. The enhancement is due to the fact that the polar $R3c$ structure of LiOsO$_3$ has a smaller volume than the centrosymmetric $Rbar{3}c$ structure. Pressure generically favors the structure with the smallest volume, and therefore further stabilizes the polar $R3c$ structure over the $Rbar{3}c$ structure, leading to the increase in $T_s$.
The Fermi surface topology of $cI$16 Li at high pressures is studied using a recently developed first-principles unfolding method. We find the occurrence of a Lifshitz transition at $sim$43 GPa, which explains the experimentally observed anomalous onset of the superconductivity enhancement toward lowered pressure. Furthermore we identify, in comparison with previous reports, additional nesting vectors that contribute to the $cI$16 structural stability. Our study highlights the importance of three-dimensional unfolding analyses for first-principles studies of Fermi surface topologies and instabilities in general.
In-situ high pressure single crystal X-ray diffraction study reveals that the quantum material CaMn$_2$Bi$_2$ undergoes a unique plane to chain structural transition between 2 and 3 GPa, accompanied by a large volume collapse. CaMn2Bi2 displays a new structure type above 2.3 GPa, with the puckered Mn honeycomb lattice of the trigonal ambient-pressure structure converting to one-dimensional (1D) zigzag chains in the high-pressure monoclinic structure. Single crystal measurements reveal that the pressure-induced structural transformation is accompanied by a dramatic two order of magnitude drop of resistivity; although the ambient pressure phase displays semiconducting behavior at low temperatures, metallic temperature dependent resistivity is observed for the high pressure phase, as, surprisingly, are two resistivity anomalies with opposite pressure dependences. Based on the electronic structure calculations, we hypothesized that the newly emerged electronic state under high pressure is associated with a Fermi surface instability of the quasi-1D Mn chains, while we infer that the other is a magnetic transition. Assessment of the total energies for hypothetical magnetic structures for high pressure CaMn$_2$Bi$_2$ indicates that ferrimagnetism is thermodynamically favored.