Do you want to publish a course? Click here

Goldstino spectrum in an ultracold Bose-Fermi mixture with explicitly broken supersymmetry

72   0   0.0 ( 0 )
 Added by Hiroyuki Tajima
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate a supersymmetric collective mode called Goldstino in a Bose-Fermi mixture. The explicit supersymmetry breaking, which is unavoidable in cold atom experiments, is considered. We derive the Gell-Mann--Oakes-Renner (GOR) relation for the Goldstino, which gives the relation between the energy gap at the zero momentum and the explicit breaking term. We also numerically evaluate the gap of Goldstino above the Bose-Einstein condensation temperature within the random phase approximation (RPA). While the gap obtained from the GOR relation coincides with that in the RPA for the mass-balanced system, there is a deviation from the GOR relation in the mass-imbalanced system. We point out the deviation becomes large when the Goldstino pole is close to the branch point, although it is parametrically a higher order with respect to the mass-imbalanced parameter. To examine the existence of the goldstino pole in realistic cold atomic systems, we show how the mass-imbalance effect appears in $^6$Li-$^7$Li, $^{40}$K-$^{41}$K, and $^{173}$Yb-$^{174}$Yb mixtures. Furthermore, we analyze the Goldstino spectral weight in a $^{173}$Yb-$^{174}$Yb mixture with realistic interactions and show a clear peak due to the Goldstino pole. As a possibility to observe the Goldstino spectrum in cold atom experiments, we discuss the effects of the Goldstino pole on the fermionic single-particle excitation as well as the relationship between the GOR relation and Tans contact.



rate research

Read More

Recent measurements of Efimov resonances in a number of ultracold atom species have revealed an unexpected universality, in which three-body scattering properties are determined by the van der Waals length of the two-body interaction potential. To investigate whether this universality extends to heteronuclear mixtures, we measure loss rate coefficients in an ultracold trapped gas of $^{40}$K and $^{87}$Rb atoms. We find an Efimov-like resonance in the rate of inelastic collisions between $^{40}$K$^{87}$Rb Feshbach molecules and $^{87}$Rb atoms. However, we do not observe any Efimov-related resonances in the rates of inelastic collisions between three atoms. These observations are compared to previous measurements by the LENS group of Efimov resonances in a $^{41}$K and $^{87}$Rb mixture as well as to recent predictions.
175 - Yue Yu , Kun Yang 2008
Supersymmetry is assumed to be a basic symmetry of the world in many high energy theories, but none of the super partners of any known elementary particle has been observed yet. We argue that supersymmetry can also be realized and studied in ultracold atomic systems with a mixture of bosons and fermions, with properly tuned interactions and single particle dispersion. We further show that in such non-releativistic systems supersymmetry is either spontaneously broken, or explicitly broken by a chemical potential difference between the bosons and fermions. In both cases the system supports a sharp fermionic collective mode or the so-called Goldstino, due to supersymmetry. We also discuss possible ways to detect the Goldstino mode experimentally.
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the perturbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation of a topological $p_{x} + ip_{y}$ superfluid for identical fermions in two dimensions (2D). The expectations of reaching the critical temperature $T_c$ through p-wave Feshbach resonance in spin-polarized fermionic gases have soon faded away because on approaching the resonance, the system becomes unstable due to inelastic-collision processes. Here, we consider an alternative scenario in which a single-component degenerate gas of fermions in 2D is paired via phonon-mediated interactions provided by a 3D BEC background. Within the weak-coupling regime, we calculate the critical temperature $T_c$ for the fermionic pair formation, using Bethe-Salpeter formalism, and show that it is significantly boosted by higher-order diagramatic terms, such as phonon dressing and vertex corrections. We describe in detail an experimental scheme to implement our proposal, and show that the long-sought p-wave superfluid is at reach with state-of-the-art experiments.
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons and fermions, a uniform Bose-Fermi mixture is predicted to exhibit a fully mixed phase, a fully separated phase or, in addition, a purely fermionic phase coexisting with a mixed phase. The occurrence of this intermediate configuration has interesting consequences when the system is nonuniform. In this work we theoretically investigate the case of solitonic solutions of coupled Bogoliubov-de Gennes and Gross-Pitaevskii equations for the fermionic and bosonic components, respectively. We show that, in the partially separated phase, a dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton, forming a dark-bright soliton which keeps full spatial coherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا