Do you want to publish a course? Click here

Tests of universal three-body physics in an ultracold Bose-Fermi mixture

248   0   0.0 ( 0 )
 Added by Ruth S. Bloom
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent measurements of Efimov resonances in a number of ultracold atom species have revealed an unexpected universality, in which three-body scattering properties are determined by the van der Waals length of the two-body interaction potential. To investigate whether this universality extends to heteronuclear mixtures, we measure loss rate coefficients in an ultracold trapped gas of $^{40}$K and $^{87}$Rb atoms. We find an Efimov-like resonance in the rate of inelastic collisions between $^{40}$K$^{87}$Rb Feshbach molecules and $^{87}$Rb atoms. However, we do not observe any Efimov-related resonances in the rates of inelastic collisions between three atoms. These observations are compared to previous measurements by the LENS group of Efimov resonances in a $^{41}$K and $^{87}$Rb mixture as well as to recent predictions.



rate research

Read More

Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the heteronuclear case. In previous experiments with ultracold mixtures of potassium and rubidium, an unexpected non-universal behavior of Efimov resonances was observed. In contrast, we measure the scattering length dependent three-body recombination coefficient in ultracold heteronuclear mixtures of $^{39}mathrm{K}$-87Rb and $^{41}mathrm{K}$-87Rb and do not observe any signatures of Efimov resonances for accessible scattering lengths in either mixture. Our results show good agreement with our theoretical model for the scattering dependent three-body recombination coefficient and reestablish universality across isotopic mixtures.
We theoretically investigate a supersymmetric collective mode called Goldstino in a Bose-Fermi mixture. The explicit supersymmetry breaking, which is unavoidable in cold atom experiments, is considered. We derive the Gell-Mann--Oakes-Renner (GOR) relation for the Goldstino, which gives the relation between the energy gap at the zero momentum and the explicit breaking term. We also numerically evaluate the gap of Goldstino above the Bose-Einstein condensation temperature within the random phase approximation (RPA). While the gap obtained from the GOR relation coincides with that in the RPA for the mass-balanced system, there is a deviation from the GOR relation in the mass-imbalanced system. We point out the deviation becomes large when the Goldstino pole is close to the branch point, although it is parametrically a higher order with respect to the mass-imbalanced parameter. To examine the existence of the goldstino pole in realistic cold atomic systems, we show how the mass-imbalance effect appears in $^6$Li-$^7$Li, $^{40}$K-$^{41}$K, and $^{173}$Yb-$^{174}$Yb mixtures. Furthermore, we analyze the Goldstino spectral weight in a $^{173}$Yb-$^{174}$Yb mixture with realistic interactions and show a clear peak due to the Goldstino pole. As a possibility to observe the Goldstino spectrum in cold atom experiments, we discuss the effects of the Goldstino pole on the fermionic single-particle excitation as well as the relationship between the GOR relation and Tans contact.
We have analyzed our recently-measured three-body loss rate coefficient for a Bose-Einstein condensate of spin-polarized metastable triplet 4He atoms in terms of Efimov physics. The large value of the scattering length for these atoms, which provides access to the Efimov regime, arises from a nearby potential resonance. We find the loss coefficient to be consistent with the three-body parameter (3BP) found in alkali-metal experiments, where Feshbach resonances are used to tune the interaction. This provides new evidence for a universal 3BP, the first outside the group of alkali-metal elements. In addition, we give examples of other atomic systems without Feshbach resonances but with a large scattering length that would be interesting to analyze once precise measurements of three-body loss are available.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation of a topological $p_{x} + ip_{y}$ superfluid for identical fermions in two dimensions (2D). The expectations of reaching the critical temperature $T_c$ through p-wave Feshbach resonance in spin-polarized fermionic gases have soon faded away because on approaching the resonance, the system becomes unstable due to inelastic-collision processes. Here, we consider an alternative scenario in which a single-component degenerate gas of fermions in 2D is paired via phonon-mediated interactions provided by a 3D BEC background. Within the weak-coupling regime, we calculate the critical temperature $T_c$ for the fermionic pair formation, using Bethe-Salpeter formalism, and show that it is significantly boosted by higher-order diagramatic terms, such as phonon dressing and vertex corrections. We describe in detail an experimental scheme to implement our proposal, and show that the long-sought p-wave superfluid is at reach with state-of-the-art experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا