No Arabic abstract
The rich optical properties of transition metal dichalcogenide monolayers (TMD-MLs) render these materials promising candidates for the design of new optoelectronic devices. Despite the large number of excitonic complexes in TMD-MLs, the main focus has been put on optically bright neutral excitons. Spin-forbidden dark excitonic complexes have been addressed for basic science purposes, but not for applications. We report on spin-forbidden dark excitonic complexes in ML WSe$_2$ as an ideal system for the facile generation of radially polarized light beams. Furthermore, the spatially resolved polarization of photoluminescence beams can be exploited for basic research on excitons in two-dimensional materials.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tuned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
Excitons and trions (or exciton-polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe$_2$. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths - through intravalley or intervalley electron-hole recombination - into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide much insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
Charged excitons, or X$^{pm}$-trions, in monolayer transition metal dichalcogenides have binding energies of several tens of meV. Together with the neutral exciton X$^0$ they dominate the emission spectrum at low and elevated temperatures. We use charge tunable devices based on WSe$_2$ monolayers encapsulated in hexagonal boron nitride, to investigate the difference in binding energy between X$^+$ and X$^-$ and the X$^-$ fine structure. We find in the charge neutral regime, the X$^0$ emission accompanied at lower energy by a strong peak close to the longitudinal optical (LO) phonon energy. This peak is absent in reflectivity measurements, where only the X$^0$ and an excited state of the X$^0$ are visible. In the $n$-doped regime, we find a closer correspondence between emission and reflectivity as the trion transition with a well-resolved fine-structure splitting of 6~meV for X$^-$ is observed. We present a symmetry analysis of the different X$^+$ and X$^-$ trion states and results of the binding energy calculations. We compare the trion binding energy for the $n$-and $p$-doped regimes with our model calculations for low carrier concentrations. We demonstrate that the splitting between the X$^+$ and X$^-$ trions as well as the fine structure of the X$^-$ state can be related to the short-range Coulomb exchange interaction between the charge carriers.
Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly-bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX$_2$ (X~being S or Se) spin-forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe$_2$ monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.
Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe$_2$, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe$_2$ under both optical and electrical excitation. This paves the way towards the realization of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics.