Do you want to publish a course? Click here

Investigation of the one-neutron transfer in $^{13}$C + $^{28}$Si at E$_{lab}$ = 30 and 34 MeV

104   0   0.0 ( 0 )
 Added by Roberto Linares
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Background: Neutron transfer measurements for the $^{18}$O + $^{28}$Si system have shown that the experimental one-neutron and two-neutron transfer cross sections are well reproduced with spectroscopic amplitudes from two different shell model interactions for the Si isotopes: textit{psdmod} for the two-neutron transfer, and textit{psdmwkpn} for the one-neutron transfer. Purpose: The origin of this ambiguity can be related to a more complex mechanism in the one-neutron transfer that requires the unpairing of neutrons prior to its transfer in the ($^{18}$O,$^{17}$O) reaction. Studying a nucleus where this characteristic is absent ($^{13}$C) should help to elucidate this question. Method: One-neutron transfer cross sections were measured for the $^{13}$C + $^{28}$Si at E$_{lab}$ = 30, and 34 MeV, and compared with coupled reaction channel calculations using spectroscopic amplitudes derived from the textit{psdmod} and textit{psdmwkpn} shell model interactions. Results: The spectroscopic amplitudes from the textit{psdmod} interaction for the relevant states in $^{29}$Si provide a good description of the experimental data and the corresponding values agree with previous estimates obtained from the (d,p) reaction. Conclusions: The experimental data for the one-neutron transfer to $^{28}$Si induced by ($^{13}$C,$^{12}$C) reaction is well reproduced using spectroscopic amplitudes from the textit{psdmod}.



rate research

Read More

Background: Recently, a systematic exploration of two-neutron transfer induced by the ($^{18}$O, $^{16}$O) reaction on different targets has been performed. The high resolution data have been collected at the MAGNEX magnetic spectrometer of the INFN-LNS laboratory in Catania and analyzed with the coupled reaction channel (CRC) approach. The simultaneous and sequential transfers of the two neutrons have been considered under the same theoretical framework without the need of adjustable factors in the calculations. Purpose: A detailed analysis of the one-neutron transfer cross sections is important to study the sequential two-neutron transfer. Here, we examine the ($^{18}$O, $^{17}$O) reaction on $^{16}$O, $^{28}$Si and $^{64}$Ni targets. These even-even nuclei allow for investigation of one-neutron transfer in distinct nuclear shell spaces. Method: The MAGNEX spectrometer was used to measure mass spectra of ejectiles and extract differential cross sections of one-neutron transfer to low-lying states. We adopted the same CRC formalism used in the sequential two-neutron transfer, including relevant channels and using spectroscopic amplitudes obtained from shell model calculations. We also compare with one-step distorted wave Born approximation (DWBA). Results: For the $^{18}$O + $^{16}$O and the $^{18}$O + $^{28}$O systems we used two interactions in the shell model. The experimental angular distributions are reasonably well reproduced by the CRC calculations. In the $^{18}$O + $^{64}$Ni system, we considered only one interaction and the theoretical curve describes the shape and order of magnitude observed in the experimental data. Conclusions: Comparisons between experimental, DWBA and CRC angle-integrated cross sections suggest that excitations before or after the transfer of neutron is relevant in the $^{18}$O + $^{16}$O and $^{18}$O + $^{64}$Ni systems.
Background: The influence of halo structure of $^6$He, $^8$B, $^{11}$Be and $^{11}$Li nuclei in several mechanisms such as direct reactions and fusion is already established, although not completely understood. The influence of the $^{10}$C Brunnian structure is less known. Purpose: To investigate the influence of the cluster configuration of $^{10}$C on the elastic scattering at an energy close to the Coulomb barrier. Methods: We present experimental data for the elastic scattering of the $^{10}$C+$^{208}$Pb system at $E_{rm lab}$ = 66 MeV. The data are compared to the three- and the four-body continuum-discretized coupled-channels calculations assuming $^9$B+$p$, $^6$Be+$alpha$ and $^8$Be+$p$+$p$ configurations. Results: The experimental angular distribution of the cross sections shows the suppression of the Fresnel peak that is reasonably well reproduced by the continuum-discretized coupled-channels calculations. However, the calculations underestimate the cross sections at backward angles. Couplings to continuum states represent a small effect. Conclusions: The cluster configurations of $^{10}$C assumed in the present work are able to describe some of the features of the data. In order to explain the data at backward angles, experimental data for the breakup and an extension of theoretical formalism towards a four-body cluster seem to be in need to reproduce the measured angular distribution.
107 - W. J. Li , Y. G. Ma , G. Q. Zhang 2019
The neutron yield in $^{12}$C(d,n)$^{13}$N and the proton yield in $^{12}C(d,p)^{13}$C have been measured by deuteron beam from 0.6 MeV to 3 MeV which is delivered from a 4-MeV electro static accelerator bombarding on the thick carbon target. The neutrons are detected at $0degree$, $24degree$, $48degree$ and the protons at $135degree$ in the lab frame. The ratios of the neutron yield to the proton one have been calculated and can be used as an effective probe to pin down the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, 2.5 MeV in $^{12}C(d,p)^{13}$C and at 1.6 MeV, 2.7 MeV in $^{12}$C(d,n)$^{13}$N. This method provides a way to reduce the systematic uncertainty and helps to confirm more resonances in compound nuclei.
The possible occurence of highly deformed configurations is investigated in the $^{40}$Ca and $^{56}$Ni di-nuclear systems as formed in the $^{28}$Si+$^{12}$C,$^{28}$Si reactions by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large $^{8}$Be cluster emission of a binary nature.
Velocity and energy spectra of the light charged particles (protons and $alpha$-particles) emitted in the $^{28}$Si(E$_{lab}$ = 112 MeV) + $^{28}$Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle multidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of $alpha$-particles emitted from the $^{28}$Si + $^{28}$Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous $alpha$-particle data from the $^{30}$Si + $^{30}$Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the A$_{CN}$ ~ 60 mass region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا