Do you want to publish a course? Click here

Misconceptions, knowledge, and attitudes of secondary school students towards the phenomenon of radioactivity

59   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since its serendipitous discovery in 1896 by Henry Becquerel, radioactivity has called the attention of both the scientific community and the broad audience due to its intriguing nature, its multiple applications and its controversial uses. For this reason, the teaching of the phenomenon is considered a key ingredient in the path towards developing critical-thinking skills in many secondary science education curricula. Despite being one of the basic concepts in general physics courses, the scientific teaching literature of the last 40 years reports a great deal of misconceptions and conceptual errors related to radioactivity that seemingly appear regardless of the context. This study explores, for the first time, the knowledge status on the topic on a sample of N=191 secondary school students and Y=29 Physics-and-Chemistry trainee teachers in the Spanish region of Valencia. To this aim, a revised version of a diagnostic tool developed by Martins cite{Mar92} has been employed. In general, the results reveal an evolution from a widespread dissenting notion on the phenomenon, which is staunchly related to danger, hazard and destruction in the lowest educational levels, towards a more rational, relative and multidimensional perspective in the highest ones. Furthermore, the great overlap of the ideas, emotions and attitudes of the inquired individuals with the main misconceptions and conceptual mistakes reported in the literature for different educational contexts unveils the urgent need to develop new teaching strategies leading to a meaningful learning of the associated nuclear science concepts.

rate research

Read More

Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This course bridges the gap between popular science articles and advanced undergraduate textbooks. Conceptual ideas in the text are reinforced with active learning techniques, such as interactive problem sets and simulation-based labs at various levels. The course is freely available for use and download under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International license.
The milq approach to quantum physics for high schools focuses on the conceptual questions of quantum physics. Students should be given the opportunity to engage with the world view of modern physics. The aim is to achieve a conceptually clear formulation of quantum physics with a minimum of formulas. In order to provide students with verbal tools they can use in discussions and argumentations we formulated four reasoning tools. They help to facilitate qualitative discussions of quantum physics, allow students to predict quantum mechanical effects, and help to avoid learning difficulties. They form a beginners axiomatic system for quantum physics.
Bernoullis equation, which relates the pressure of an ideal fluid in motion with its velocity and height under certain conditions, is a central topic in General Physics courses for Science and Engineering students. This equation, frequently used both textbooks as in science outreach activities or museums, is often extrapolated to explain situations in which it is no longer valid. A common example is to assume that, in any situation, higher speed means lower pressure, a conclusion that is only acceptable under certain conditions. In this paper we report the results of an investigation with university students on some misconceptions present in fluid dynamics. We found that after completing the General Physics courses, many students have not developed a correct model about the interaction of a fluid element with its environment and extrapolate the idea that higher speed implies lower pressure in situations where it is no longer valid. We also show that an approach to fluid dynamics based on Newtons laws is more natural to address these misconceptions.
It has become increasingly common for high-school students to see media reports on the importance of quantum mechanics in the development of next-generation industries such as drug development and secure communication, but few of them have been exposed to fundamental quantum mechanical concepts in a meaningful classroom activity. In order to bridge this gap, we design and test a low-cost 20-minute demonstration of the Bell test, which is used in several entanglement-based quantum key distribution protocols. The demonstration introduces ideas such as the quantum state, quantum measurement, spin quantization, cryptography, and entanglement; all without using concepts beyond the 9th grade of the Chilean high-school curriculum. The demonstration can serve to promote early exposure of the future adopters and developers of quantum technology with its conceptual building blocks, and also to educate the general public about the importance of quantum mechanics in modern industry
To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا