No Arabic abstract
Sub-gap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically non-trivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete sub-gap states in a long nanowire segment. In addition to sub-gap states with a standard magnetic field dependence, we find topologically trivial sub-gap states that are independent of the external magnetic field, i.e. that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates.
We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting phase possible, there is a trivial Andreev bound state that becomes pinned exponentially close to zero energy as a function of magnetic field strength when the length of the quantum dot is tuned with respect to its spin-orbit length such that a resonance condition of Fabry-Perot type is satisfied. In this case, we find that the Andreev bound state remains pinned near zero energy for Zeeman energies that exceed the characteristic spacing between Andreev bound state levels but that are smaller than the spin-orbit energy of the quantum dot. Importantly, as the pinning of the Andreev bound state depends only on properties of the quantum dot, we conclude that this behavior is unrelated to topological superconductivity. To support our analytical model, we also perform a numerical simulation of a hybrid system while explicitly incorporating a thin superconducting layer, showing that all qualitative features of our analytical model are also present in the numerical results.
We theoretically analyze the Andreev bound states and their coupling to external radiation in superconductor-nanowire-superconductor Josephson junctions. We provide an effective Hamiltonian for the junction projected onto the Andreev level subspace and incorporating the effects of nanowire multichannel structure, Rashba spin-orbit coupling, and Zeeman field. Based on this effective model, we investigate the dependence of the Andreev levels and the matrix elements of the current operator on system parameters such as chemical potential, nanowire dimensions, and normal transmission. We show that the combined effect of the multichannel structure and the spin-orbit coupling gives rise to finite current matrix elements between odd states having different spin polarizations. Moreover, our analytical results allow to determine the appropriate parameters range for the detection of transitions between even as well as odd states in circuit QED like experiments, which may provide a way for the Andreev spin qubit manipulation.
Using Bogoliubov-de Gennes (BdG) equations we numerically calculate the disorder averaged density of states of disordered semiconductor nanowires driven into a putative topological p-wave superconducting phase by spin-orbit coupling, Zeeman spin splitting and s-wave superconducting proximity effect induced by a nearby superconductor. Comparing with the corresponding theoretical self-consistent Born approximation (SCBA) results treating disorder effects, we comment on the topological phase diagram of the system in the presence of increasing disorder. Although disorder strongly suppresses the zero-bias peak (ZBP) associated with the Majorana zero mode, we find some clear remnant of a ZBP even when the topological gap has essentially vanished in the SCBA theory because of disorder. We explicitly compare effects of disorder on the numerical density of states in the topological and trivial phases.
We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair mediated transport. When sub-gap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti) crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires.
We consider a Rashba nanowire with proximity gap which can be brought into the topological phase by tuning external magnetic field or chemical potential. We study spin and charge of the bulk quasiparticle states when passing through the topological transition for open and closed systems. We show, analytically and numerically, that the spin of bulk states around the topological gap reverses its sign when crossing the transition due to band inversion, independent of the presence of Majorana fermions in the system. This spin reversal can be considered as a bulk signature of topological superconductivity that can be accessed experimentally. We find a similar behaviour for the charge of the bulk quasiparticle states, also exhibiting a sign reversal at the transition. We show that these signatures are robust against random static disorder.