No Arabic abstract
The classification of topological insulators predicts the existence of high-dimensional topological phases that cannot occur in real materials, as these are limited to three or fewer spatial dimensions. We use electric circuits to experimentally implement a four-dimensional (4D) topological lattice. The lattice dimensionality is established by circuit connections, and not by mapping to a lower-dimensional system. On the lattices three-dimensional surface, we observe topological surface states that are associated with a nonzero second Chern number but vanishing first Chern numbers. The 4D lattice belongs to symmetry class AI, which refers to time-reversal-invariant and spinless systems with no special spatial symmetry. Class AI is topologically trivial in one to three spatial dimensions, so 4D is the lowest possible dimension for achieving a topological insulator in this class. This work paves the way to the use of electric circuits for exploring high-dimensional topological models.
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
The Su-Schrieffer-Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting non-trivial edge states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is affected by a time-dependent potential. In particular, we evidence the competition among different photon-assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology at different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting Floquet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or replaced by new Floquet edge states. Our study is complemented by an analysis of Zak phase applied to the Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases, our results could find a promising test-ground in cold matter experiments.
In recent attempts to observe axion electrodynamics, much effort has focused on trilayer heterostructures of magnetic topological insulators, and in particular on the examination of a so-called zero Hall plateau, which has misguidedly been overstated as direct evidence of an axion insulator state. We investigate the general notion of axion insulators, which by definition must contain a nontrivial volume to host the axion term. We conduct a detailed magneto-transport analysis of Chern insulators comprised of a single magnetic topological insulator layer of varying thickness as well as trilayer structures, for samples optimized to yield a perfectly quantized anomalous Hall effect. Our analysis gives evidence for a topological magneto-electric effect quantized in units of e$^2$/2h, allowing us to identify signatures of axion electrodynamics. Our observations may provide direct experimental access to electrodynamic properties of the universe beyond the traditional Maxwell equations, and challenge the hitherto proclaimed exclusive link between the observation of a zero Hall plateau and an axion insulator.
Though the Fermi surface of surface states of a 3D topological insulator (TI) has zero magnetization, an arbitrary segment of the full Fermi surface has a unique magnetic moment consistent with the type of spin-momentum locking in hand. We propose a three-terminal set up, which directly couples to the magnetization of a chosen segment of a Fermi surface hence leading to a finite tunnel magnetoresistance (TMR) response of the nonmagnetic TI surface states, when coupled to spin polarized STM probe. This multiterminal TMR not only provides a unique signature of spin-momentum locking for a pristine TI but also provides a direct measure of momentum resolved out of plane polarization of hexagonally warped Fermi surfaces relevant for $Bi_2Te_3$, which could be as comprehensive as spin-resolved ARPES. Implication of this unconventional TMR is also discussed in the broader context of 2D spin-orbit (SO) materials.
From the analysis of the cyclotron resonance, we experimentally obtain the band structure of the three-dimensional topological insulator based on a HgTe thin film. Top gating was used to shift the Fermi level in the film, allowing us to detect separate resonance modes corresponding to the surface states at two opposite film interfaces, the bulk conduction band, and the valence band. The experimental band structure agrees reasonably well with the predictions of the $mathbf{kcdot p}$ model. Due to the strong hybridization of the surface and bulk bands, the dispersion of the surface states is close to parabolic in the broad range of the electron energies.