Do you want to publish a course? Click here

Tunnel Magnetoresistance scan of a pristine three-dimensional topological insulator

134   0   0.0 ( 0 )
 Added by Sthitadhi Roy
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Though the Fermi surface of surface states of a 3D topological insulator (TI) has zero magnetization, an arbitrary segment of the full Fermi surface has a unique magnetic moment consistent with the type of spin-momentum locking in hand. We propose a three-terminal set up, which directly couples to the magnetization of a chosen segment of a Fermi surface hence leading to a finite tunnel magnetoresistance (TMR) response of the nonmagnetic TI surface states, when coupled to spin polarized STM probe. This multiterminal TMR not only provides a unique signature of spin-momentum locking for a pristine TI but also provides a direct measure of momentum resolved out of plane polarization of hexagonally warped Fermi surfaces relevant for $Bi_2Te_3$, which could be as comprehensive as spin-resolved ARPES. Implication of this unconventional TMR is also discussed in the broader context of 2D spin-orbit (SO) materials.



rate research

Read More

We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
In recent attempts to observe axion electrodynamics, much effort has focused on trilayer heterostructures of magnetic topological insulators, and in particular on the examination of a so-called zero Hall plateau, which has misguidedly been overstated as direct evidence of an axion insulator state. We investigate the general notion of axion insulators, which by definition must contain a nontrivial volume to host the axion term. We conduct a detailed magneto-transport analysis of Chern insulators comprised of a single magnetic topological insulator layer of varying thickness as well as trilayer structures, for samples optimized to yield a perfectly quantized anomalous Hall effect. Our analysis gives evidence for a topological magneto-electric effect quantized in units of e$^2$/2h, allowing us to identify signatures of axion electrodynamics. Our observations may provide direct experimental access to electrodynamic properties of the universe beyond the traditional Maxwell equations, and challenge the hitherto proclaimed exclusive link between the observation of a zero Hall plateau and an axion insulator.
From the analysis of the cyclotron resonance, we experimentally obtain the band structure of the three-dimensional topological insulator based on a HgTe thin film. Top gating was used to shift the Fermi level in the film, allowing us to detect separate resonance modes corresponding to the surface states at two opposite film interfaces, the bulk conduction band, and the valence band. The experimental band structure agrees reasonably well with the predictions of the $mathbf{kcdot p}$ model. Due to the strong hybridization of the surface and bulk bands, the dispersion of the surface states is close to parabolic in the broad range of the electron energies.
We study the magnetotransport properties of patterned 3D topological insulator nanostructures with several leads, such as kinks or Y-junctions, near the Dirac point with analytical as well as numerical techniques. The interplay of the nanostructure geometry, the external magnetic field and the spin-momentum locking of the topological surface states lead to a richer magnetoconductance phenomenology as compared to straight nanowires. Similar to straight wires, a quantized conductance with perfect transmission across the nanostructure can be realized across a kink when the input and output channels are pierced by a half-integer magnetic flux quantum. Unlike for straight wires, there is an additional requirement depending on the orientation of the external magnetic field. A right-angle kink shows a unique $pi$-periodic magnetoconductance signature as a function of the in-plane angle of the magnetic field. For a Y-junction, the transmission can be perfectly steered to either of the two possible output legs by a proper alignment of the external magnetic field. These magnetotransport signatures offer new ways to explore topological surface states and could be relevant for quantum transport experiments on nanostructures which can be realized with existing fabrication methods.
106 - Haoran Xue , Ding Jia , Yong Ge 2021
The interplay between real-space topological lattice defects and the reciprocal-space topology of energy bands can give rise to novel phenomena, such as one-dimensional topological modes bound to screw dislocations in three-dimensional topological insulators. We obtain direct experimental observations of dislocation-induced helical modes in an acoustic analog of a weak three-dimensional topological insulator. The spatial distribution of the helical modes is found through spin-resolved field mapping, and verified numerically by tight-binding and finite-element calculations. These one-dimensional helical channels can serve as robust waveguides in three-dimensional media. Our experiment paves the way to studying novel physical modes and functionalities enabled by topological lattice defects in three-dimensional classical topological materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا