Do you want to publish a course? Click here

Exploring Spatio-Temporal and Cross-Type Correlations for Crime Prediction

113   0   0.0 ( 0 )
 Added by Xiangyu Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fine-grained spatio-temporal logs has been recorded. Such helpful information can boost our understandings about the temporal evolution and spatial factors of urban crimes and can enhance accurate crime prediction. In this paper, we perform crime prediction exploiting the cross-type and spatio-temporal correlations of urban crimes. In particular, we verify the existence of correlations among different types of crime from temporal and spatial perspectives, and propose a coherent framework to mathematically model these correlations for crime prediction. The extensive experimental results on real-world data validate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of different correlations in crime prediction.



rate research

Read More

This paper proposes a spatio-temporal model for wind speed prediction which can be run at different resolutions. The model assumes that the wind prediction of a cluster is correlated to its upstream influences in recent history, and the correlation between clusters is represented by a directed dynamic graph. A Bayesian approach is also described in which prior beliefs about the predictive errors at different data resolutions are represented in a form of Gaussian processes. The joint framework enhances the predictive performance by combining results from predictions at different data resolution and provides reasonable uncertainty quantification. The model is evaluated on actual wind data from the Midwest U.S. and shows a superior performance compared to traditional baselines.
176 - Fahui Wang , Yujie Hu , Shuai Wang 2020
Most existing point-based colocation methods are global measures (e.g., join count statistic, cross K function, and global colocation quotient). Most recently, a local indicator such as the local colocation quotient is proposed to capture the variability of colocation across areas. Our research advances this line of work by developing a simulation-based statistic test for the local indicator of colocation quotient (LCLQ). The study applies the indicator to examine the association of land use facilities with crime patterns. Moreover, we use the street network distance in addition to the traditional Euclidean distance in defining neighbors since human activities (including facilities and crimes) usually occur along a street network. The method is applied to analyze the colocation of three types of crimes and three categories of facilities in a city in Jiangsu Province, China. The findings demonstrate the value of the proposed method in colocation analysis of crime and facilities, and in general colocation analysis of point data.
Atmospheric trace-gas inversion refers to any technique used to predict spatial and temporal fluxes using mole-fraction measurements and atmospheric simulations obtained from computer models. Studies to date are most often of a data-assimilation flavour, which implicitly consider univariate statistical models with the flux as the variate of interest. This univariate approach typically assumes that the flux field is either a spatially correlated Gaussian process or a spatially uncorrelated non-Gaussian process with prior expectation fixed using flux inventories (e.g., NAEI or EDGAR in Europe). Here, we extend this approach in three ways. First, we develop a bivariate model for the mole-fraction field and the flux field. The bivariate approach allows optimal prediction of both the flux field and the mole-fraction field, and it leads to significant computational savings over the univariate approach. Second, we employ a lognormal spatial process for the flux field that captures both the lognormal characteristics of the flux field (when appropriate) and its spatial dependence. Third, we propose a new, geostatistical approach to incorporate the flux inventories in our updates, such that the posterior spatial distribution of the flux field is predominantly data-driven. The approach is illustrated on a case study of methane (CH$_4$) emissions in the United Kingdom and Ireland.
To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air travel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
The dynamical response of Coulomb-interacting particles in nano-clusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap-symmetry, both the spatial and temporal correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Our results indicate that the distinction between the `solid and `liquid is soft: While particles in a `solid flow producing dynamic heterogeneities, motion in `liquid yields unusually long tail in the distribution of particle-displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا