No Arabic abstract
The dynamical response of Coulomb-interacting particles in nano-clusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap-symmetry, both the spatial and temporal correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Our results indicate that the distinction between the `solid and `liquid is soft: While particles in a `solid flow producing dynamic heterogeneities, motion in `liquid yields unusually long tail in the distribution of particle-displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
We propose a spatio-temporal characterization of the entanglement dynamics in many-body localized (MBL) systems, which exhibits a striking resemblance with dynamical heterogeneities in classical glasses. Specifically, we find that the relaxation times of local entanglement, as measured by the concurrence, are spatially correlated giving rise to a dynamical correlation length for quantum entanglement. Our work provides a yet unrecognized connection between the behavior of classical glasses and the genuine quantum dynamics of MBL systems.
For the first time, the diffusion phase diagram in highly confined colloidal systems, predicted by Continuous Time Random Walk (CTRW), is experimentally obtained. Temporal and spatial fractional exponents, $alpha$ and $mu$, introduced within the framework of CTRW, are simultaneously measured by Pulse Field Gradient Nuclear Magnetic Resonance technique in samples of micro-beads dispersed in water. We find that $alpha$ depends on the disorder degree of the system. Conversely, $mu$ depends on both bead sizes and magnetic susceptibility differences within samples. Our findings fully match the CTRW predictions.
We adopt a geometric perspective on Fock space to provide two complementary insights into the eigenstates in many-body-localized fermionic systems. On the one hand, individual many-body-localized eigenstates are well approximated by a Slater determinant of single-particle orbitals. On the other hand, the orbitals of different eigenstates in a given system display a varying, and generally imperfect, degree of compatibility, as we quantify by a measure based on the projectors onto the corresponding single-particle subspaces. We study this incompatibility between states of fixed and differing particle number, as well as inside and outside the many-body-localized regime. This gives detailed insights into the emergence and strongly correlated nature of quasiparticle-like excitations in many-body localized systems, revealing intricate correlations between states of different particle number down to the level of individual realizations.
We analyze the transport properties of a set of symmetry-breaking extensions %, both spatial and temporal, of the Chirikov--Taylor Map. The spatial and temporal asymmetries result in the loss of periodicity in momentum direction in the phase space dynamics, enabling the asymmetric diffusion which is the origin of the unidirectional motion. The simplicity of the model makes the calculation of the global dynamical properties of the system feasible both in phase space and in controlling-parameter space. We present the results of numerical experiments which show the intricate dependence of the asymmetric diffusion to the controlling parameters.
We study the statistical properties of the complex generalization of Wigner time delay $tau_text{W}$ for sub-unitary wave chaotic scattering systems. We first demonstrate theoretically that the mean value of the $text{Re}[tau_text{W}]$ distribution function for a system with uniform absorption strength $eta$ is equal to the fraction of scattering matrix poles with imaginary parts exceeding $eta$. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels, and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave chaotic scattering system in the short-wavelength limit.