No Arabic abstract
Recently, information cascade prediction has attracted increasing interest from researchers, but it is far from being well solved partly due to the three defects of the existing works. First, the existing works often assume an underlying information diffusion model, which is impractical in real world due to the complexity of information diffusion. Second, the existing works often ignore the prediction of the infection order, which also plays an important role in social network analysis. At last, the existing works often depend on the requirement of underlying diffusion networks which are likely unobservable in practice. In this paper, we aim at the prediction of both node infection and infection order without requirement of the knowledge about the underlying diffusion mechanism and the diffusion network, where the challenges are two-fold. The first is what cascading characteristics of nodes should be captured and how to capture them, and the second is that how to model the non-linear features of nodes in information cascades. To address these challenges, we propose a novel model called Deep Collaborative Embedding (DCE) for information cascade prediction, which can capture not only the node structural property but also two kinds of node cascading characteristics. We propose an auto-encoder based collaborative embedding framework to learn the node embeddings with cascade collaboration and node collaboration, in which way the non-linearity of information cascades can be effectively captured. The results of extensive experiments conducted on real-world datasets verify the effectiveness of our approach.
The behaviour of information cascades (such as retweets) has been modelled extensively. While point process-based generative models have long been in use for estimating cascade growths, deep learning has greatly enhanced diverse feature integration. We observe two significant temporal signals in cascade data that have not been emphasized or reported to our knowledge. First, the popularity of the cascade root is known to influence cascade size strongly; but the effect falls off rapidly with time. Second, there is a measurable positive correlation between the novelty of the root content (with respect to a streaming external corpus) and the relative size of the resulting cascade. Responding to these observations, we propose GammaCas, a new cascade growth model as a parametric function of time, which combines deep influence signals from content (e.g., tweet text), network features (e.g., followers of the root user), and exogenous event sources (e.g., online news). Specifically, our model processes these signals through a customized recurrent network, whose states then provide the parameters of the cascade rate function, which is integrated over time to predict the cascade size. The network parameters are trained end-to-end using observed cascades. GammaCas outperforms seven recent and diverse baselines significantly on a large-scale dataset of retweet cascades coupled with time-aligned online news -- it beats the best baseline with an 18.98% increase in terms of Kendalls $tau$ correlation and $35.63$ reduction in Mean Absolute Percentage Error. Extensive ablation and case studies unearth interesting insights regarding retweet cascade dynamics.
In todays networked society, many real-world problems can be formalized as predicting links in networks, such as Facebook friendship suggestions, e-commerce recommendations, and the prediction of scientific collaborations in citation networks. Increasingly often, link prediction problem is tackled by means of network embedding methods, owing to their state-of-the-art performance. However, these methods lack transparency when compared to simpler baselines, and as a result their robustness against adversarial attacks is a possible point of concern: could one or a few small adversarial modifications to the network have a large impact on the link prediction performance when using a network embedding model? Prior research has already investigated adversarial robustness for network embedding models, focused on classification at the node and graph level. Robustness with respect to the link prediction downstream task, on the other hand, has been explored much less. This paper contributes to filling this gap, by studying adversarial robustness of Conditional Network Embedding (CNE), a state-of-the-art probabilistic network embedding model, for link prediction. More specifically, given CNE and a network, we measure the sensitivity of the link predictions of the model to small adversarial perturbations of the network, namely changes of the link status of a node pair. Thus, our approach allows one to identify the links and non-links in the network that are most vulnerable to such perturbations, for further investigation by an analyst. We analyze the characteristics of the most and least sensitive perturbations, and empirically confirm that our approach not only succeeds in identifying the most vulnerable links and non-links, but also that it does so in a time-efficient manner thanks to an effective approximation.
Network representation learning (NRL) plays a vital role in a variety of tasks such as node classification and link prediction. It aims to learn low-dimensional vector representations for nodes based on network structures or node attributes. While embedding techniques on complete networks have been intensively studied, in real-world applications, it is still a challenging task to collect complete networks. To bridge the gap, in this paper, we propose a Deep Incomplete Network Embedding method, namely DINE. Specifically, we first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework. To improve the embedding performance, we consider both network structures and node attributes to learn node representations. Empirically, we evaluate DINE over three networks on multi-label classification and link prediction tasks. The results demonstrate the superiority of our proposed approach compared against state-of-the-art baselines.
Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.
Spreading processes play an increasingly important role in modeling for diffusion networks, information propagation, marketing and opinion setting. We address the problem of learning of a spreading model such that the predictions generated from this model are accurate and could be subsequently used for the optimization, and control of diffusion dynamics. We focus on a challenging setting where full observations of the dynamics are not available, and standard approaches such as maximum likelihood quickly become intractable for large network instances. We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach, which is able to learn parameters of the effective spreading model given only limited information on the activation times of nodes in the network. The popular Independent Cascade model is used to illustrate our approach. We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model. We develop a systematic procedure for learning a mixture of models which further improves the prediction quality.