No Arabic abstract
The demonstration of superconductivity in nickelate analogues of high $T_c$ cuprates provides new perspectives on the physics of correlated electron materials. The degree to which the nickelate electronic structure is similar to that of cuprates is an important open question. This paper presents results of a comparative study of the many-body electronic structure and theoretical phase diagram of the isostructural materials CaCuO$_2$ and NdNiO$_2$. Important differences include the proximity of the oxygen $2p$ bands to the Fermi level, the bandwidth of the transition metal-derived $3d$ bands, and the presence, in NdNiO$_2$, of both Nd-derived $5d$ states crossing the Fermi level and a van Hove singularity that crosses the Fermi level as the out of plane momentum is varied. The low energy physics of NdNiO$_2$ is found to be that of a single Ni-derived correlated band, with additional accompanying weakly correlated bands of Nd-derived states that dope the Ni-derived band. The effective correlation strength of the Ni-derived $d$-band crossing the Fermi level in NdNiO$_2$ is found to be greater than that of the Cu-derived $d$-band in CaCuO$_2$, but the predicted magnetic transition temperature of NdNiO$_2$ is substantially lower than that of CaCuO$_2$ because of the smaller bandwidth.
We study the many-body electronic structure of the stoichiometric and electron-doped trilayer nickelate Pr$_4$Ni$_3$O$_8$ in comparison to that of the stoichiometric and hole-doped infinite layer nickelate NdNiO$_2$ within the framework of density functional plus dynamical mean field theory, noting that Pr$_4$Ni$_3$O$_8$ has the same nominal carrier concentration as NdNiO$_2$ doped to a level of 1/3 holes/Ni. We find that the correlated Ni-$3d$ shells of both of these low valence nickelates have similar many-body configurations with correlations dominated by the $d_{x^2-y^2}$ orbital. Additionally, when compared at the same nominal carrier concentration, the materials exhibit similar many-body electronic structures, self energies, and correlation strengths. Compared to cuprates, these materials are closer to the Mott-Hubbard regime due to their larger charge transfer energies. Moreover, doping involves the charge reservoir provided by the rare earth $5d$ electrons, as opposed to cuprates where it is realized via the oxygen $2p$ electrons.
The recent discovery of Sr-doped infinite-layer nickelate $textrm{NdNiO}_2$ [D. Li et al. Nature 572, 624 (2019)] offers an exciting platform for investigating unconventional superconductivity in nickelatebased compounds. In this work, we present a first-principles calculations for the electronic and magnetic properties of undoped parent $textrm{NdNiO}_2$. Intriguingly, we found that: 1) the paramagnetic phase has complex Fermi pockets with 3D characters near the Fermi level; 2) by including electronelectron interactions, 3d-electrons of Ni tend to form $(pi, pi, pi)$ antiferromagnetic ordering at low temperatures; 3) with moderate interaction strength, 5d-electrons of Nd contribute small Fermi pockets that could weaken the magnetic order akin to the self-doping effect. Our results provide a plausible interpretation for the experimentally observed resistivity minimum and Hall coefficient drop. Moreover, we elucidate that antiferromagnetic ordering in $textrm{NdNiO}_2$ is relatively weak, arising from the small exchange coupling between 3d-electrons of Niand also hybridization with 5d-electrons of Nd.
We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) to the local density approximation (LDA). We show that the QSGW approximation predicts an f-level shift upwards of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy is not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.
We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $muOmega$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $gamma$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior.
We present an ab initio $GW$ self-energy calculation of the electronic structure of LaNiO$_2$. With respect to density-functional theory we find that in $GW$ the La 4$f$ states undergo an important $+$2 eV upward shift from the Fermi level, while the O 2$p$ states are pulled down by $-$1.5 eV, thus reinforcing the charge-transfer character of this material. However, $GW$ many-body effects leave the $d$-like bands at the Fermi level almost unaffected, so that the Fermi-surface topology is preserved, unlike in cuprates.