No Arabic abstract
The innovative concept of Electric Aircraft is a challenging topic involving different control objectives. For instance, it becomes possible to reduce the size and the weight of the generator by using the battery as an auxiliary generator in some operation phases. However, control strategies with different objectives can be conflicting and they can produce undesirable effects, even instability. For this reason an integrated design approach is needed, where stability can be guaranteed in any configuration. In other words, the design of the supervisory controller must be interlaced with that of low-level controllers. Moreover, uncertainties and noisy signals require robust control techniques and the use of adaptiveness in the control algorithm. In this paper, an aeronautic application aiming at recharging batteries and to use the battery to withstand generator overloads is addressed. Detailed and rigorous stability proofs are given for any control configuration, including the switching phases among different control objectives. Effectiveness of the proposed strategies is shown by using a detailed simulator including switching electronic components.
Due to the rapid development technologies for small unmanned aircraft systems (sUAS), the supply and demand market for sUAS is expanding globally. With the great number of sUAS ready to fly in civilian airspace, an sUAS aircraft traffic management system that can guarantee the safe and efficient operation of sUAS is still at absence. In this paper, we propose a control protocol design and analysis method for sUAS traffic management (UTM) which can safely manage a large number of sUAS. The benefits of our approach are two folds: at the top level, the effort for monitoring sUAS traffic (authorities) and control/planning for each sUAS (operator/pilot) are both greatly reduced under our framework; and at the low level, the behavior of individual sUAS is guaranteed to follow the restrictions. Mathematical proofs and numerical simulations are presented to demonstrate the proposed method.
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-time monitoring and control and supports electric vehicle (EV) charging at scale. The ACN adopts a flexible Adaptive Scheduling Algorithm based on convex optimization and model predictive control and allows for significant over-subscription of electrical infrastructure. We describe some of the practical challenges in real-world charging systems, including unbalanced three-phase infrastructure, non-ideal battery charging behavior, and quantized control signals. We demonstrate how the Adaptive Scheduling Algorithm handles these challenges, and compare its performance against baseline algorithms from the deadline scheduling literature using real workloads recorded from the Caltech ACN and accurate system models. We find that in these realistic settings, our scheduling algorithm can improve operator profit by 3.4 times over uncontrolled charging and consistently outperforms baseline algorithms when delivering energy in highly congested systems.
This paper concentrates on the study of the decentralized fuzzy control method for a class of fractional-order interconnected systems with unknown control directions. To overcome the difficulties caused by the multiple unknown control directions in fractional-order systems, a novel fractional-order Nussbaum function technique is proposed. This technique is much more general than those of existing works since it not only handles single/multiple unknown control directions but is also suitable for fractional/integer-order single/interconnected systems. Based on this technique, a new decentralized adaptive control method is proposed for fractional-order interconnected systems. Smooth functions are introduced to compensate for unknown interactions among subsystems adaptively. Furthermore, fuzzy logic systems are utilized to approximate unknown nonlinearities. It is proven that the designed controller can guarantee the boundedness of all signals in interconnected systems and the convergence of tracking errors. Two examples are given to show the validity of the proposed method.
We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurements, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
The cooperative control applied to vehicles allows the optimization of traffic on the roads. There are many aspects to consider in the case of the operation of autonomous vehicles on highways since there are different external parameters that can be involved in the analysis of a network. In this paper, we present the design and simulation of adaptive control for a platoon with heterogeneous vehicles, taking into account that not all vehicles can communicate their control input, and in turn include structured nonlinear uncertainty input parameters.