No Arabic abstract
The quest for binary and dual supermassive black holes (SMBHs) at the dawn of the multi-messenger era is compelling. Detecting dual active galactic nuclei (AGN) -- active SMBHs at projected separations larger than several parsecs -- and binary AGN -- probing the scale where SMBHs are bound in a Keplerian binary -- is an observational challenge. The study of AGN pairs (either dual or binary) also represents an overarching theoretical problem in cosmology and astrophysics. The AGN triggering calls for detailed knowledge of the hydrodynamical conditions of gas in the imminent surroundings of the SMBHs and, at the same time, their duality calls for detailed knowledge on how galaxies assemble through major and minor mergers and grow fed by matter along the filaments of the cosmic web. This review describes the techniques used across the electromagnetic spectrum to detect dual and binary AGN candidates and proposes new avenues for their search. The current observational status is compared with the state-of-the-art numerical simulations and models for formation of dual and binary AGN. Binary SMBHs are among the loudest sources of gravitational waves (GWs) in the Universe. The search for a background of GWs at nHz frequencies from inspiralling SMBHs at low redshifts, and the direct detection of signals from their coalescence by the Laser Interferometer Space Antenna in the next decade, make this a theme of major interest for multi-messenger astrophysics. This review discusses the future facilities and observational strategies that are likely to significantly advance this fascinating field.
Pulsar timing arrays are sensitive to gravitational waves from supermassive black hole (SMBH) binaries at orbital separations of << 1pc. There is currently an observational paucity of such systems, although they are central figures in studies of galaxy evolution, merger dynamics, and active nucleus formation. We review the prospects of detecting SMBH binaries through electromagnetic radiative processes thought to be associated with galaxy mergers and late-stage binary evolution. We then discuss the scientific goals of joint pulsar timing and electromagnetic studies of these systems, including the facilitation of binary parameter estimation, identifying galactic hosts of gravitational wave emitters, and relevant studies of merger dynamics and cosmology. The use of upcoming high-precision timing arrays with the International Pulsar Timing Array and the Square Kilometre Array, combined with ongoing electromagnetic observing campaigns to identify active SMBH binaries, provide generous possibilities for multi-messenger astrophysics in the near future.
Quasars whose broad emission lines show temporal, bulk radial velocity (RV) shifts have been proposed as candidate sub-parsec (sub-pc), binary supermassive black holes (BSBHs). We identified a sample of 16 BSBH candidates based on two-epoch spectroscopy among 52 quasars with significant RV shifts over a few rest-frame years. The candidates showed consistent velocity shifts independently measured from two broad lines (H$beta$ and H$alpha$ or Mg${rm ,II}$) without significant changes in the broad-line profiles. Here in the third paper of the series, we present further third- and fourth-epoch spectroscopy for 12 of the 16 candidates for continued RV tests, spanning $sim$5--15 yr in the quasars rest frames. Cross-correlation analysis of the broad H$beta$ calibrated against [O${rm,III}],lambda 5007$ suggests that 5 of the 12 quasars remain valid as BSBH candidates. They show broad H$beta$ RV curves that are consistent with binary orbital motion without significant changes in the broad line profiles. Their broad H$alpha$ (or Mg${rm ,II}$) lines display RV shifts that are either consistent with or smaller than those seen in broad H$beta$. The RV shifts can be explained by a $sim$0.05--0.1 pc BSBH with an orbital period of $sim$40--130 yr, assuming a mass ratio of 0.5--2 and a circular orbit. However, the parameters are not well constrained given the few epochs that sample only a small portion of the hypothesized binary orbital cycle. The apparent occurrence rate of sub-pc BSBHs is $lesssim$13$pm$5% among all SDSS quasars, with no significant difference in the subsets with and without single-epoch broad line velocity offsets. Dedicated long-term spectroscopic monitoring is still needed to further confirm or reject these BSBH candidates.
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{rm c,yr}$, to be < $1.0times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key component in our understanding of galaxy evolution. Dedicated searches for SMBBHs in all stages of their evolution are therefore ongoing and many systems have been discovered in recent years. Here we provide a review of the status of observations with a focus on the multiwavelength detection methods and the underlying physics. Finally, we highlight our ongoing, dedicated multiwavelength program MOMO (for Multiwavelength Observations and Modelling of OJ 287). OJ 287 is one of the best candidates to date for hosting a sub-parsec SMBBH. The MOMO program carries out a dense monitoring at >13 frequencies from radio to X-rays and especially with Swift since 2015. Results so far included: (1) The detection of two major UV-X-ray outbursts with Swift in 2016/17 and 2020; exhibiting softer-when-brighter behaviour. The non-thermal nature of the outbursts was clearly established and shown to be synchrotron radiation. (2) Swift multi-band dense coverage and XMM-Newton spectroscopy during EHT campaigns caught OJ 287 at an intermediate flux level with synchrotron and IC spectral components. (3) Discovery of a remarkable, giant soft X-ray excess with XMM and NuSTAR during the 2020 outburst. (4) Spectral evidence (at 2sigma) for a relativistically shifted iron absorption line in 2020. (5) The non-thermal 2020 outburst is consistent with an after-flare predicted by the SMBBH model of OJ 287.
The discoveries made over the past 20 years by Chandra and XMM-Newton surveys in conjunction with multiwavelength imaging and spectroscopic data available in the same fields have significantly changed the view of the supermassive black hole (SMBH) and galaxy connection. These discoveries have opened up several exciting questions that are beyond the capabilities of current X-ray telescopes and will need to be addressed by observatories in the next two decades. As new observatories peer into the early Universe, we will begin to understand the physics and demographics of SMBH infancy (at $z>6$) and investigate the influence of their accretion on the formation of the first galaxies ($S$ 2.1). We will also be able to understand the accretion and evolution over the cosmic history (at $zsim$1-6) of the full population of black holes in galaxies, including low accretion rate, heavily obscured AGNs at luminosities beyond the reach of current X-ray surveys ($S$2.2 and $S$2.3), enabling us to resolve the connection between SMBH growth and their environment.