Do you want to publish a course? Click here

Gravitational waves from binary supermassive black holes missing in pulsar observations

118   0   0.0 ( 0 )
 Added by Ryan Shannon
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{rm c,yr}$, to be < $1.0times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.



rate research

Read More

Supermassive black hole binary mergers generate a stochastic gravitational wave background detectable by pulsar timing arrays. While the amplitude of this background is subject to significant uncertainties, the frequency dependence is a robust prediction of general relativity. We show that the effects of new forces beyond the Standard Model can modify this prediction and introduce unique features into the spectral shape. In particular, we consider the possibility that black holes in binaries are charged under a new long-range force, and we find that pulsar timing arrays are capable of robustly detecting such forces. Supermassive black holes and their environments can acquire charge due to high-energy particle production or dark sector interactions, making the measurement of the spectral shape a powerful test of fundamental physics.
We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest EPTA dataset, which consists of ultra-precise timing data on 41 millisecond pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95% upper limit on the sky-averaged strain amplitude lies in the range $6times 10^{-15}<A<1.5times10^{-14}$ at $5{rm nHz}<f<7{rm nHz}$. This limit varies by a factor of five, depending on the assumed source position, and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit -- obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars -- is $Aapprox10^{-14}$. These limits, the most stringent to date at $f<10{rm nHz}$, exclude the presence of sub-centiparsec binaries with chirp mass $cal{M}_c>10^9$M$_odot$ out to a distance of about 25Mpc, and with $cal{M}_c>10^{10}$M$_odot$ out to a distance of about 1Gpc ($zapprox0.2$). We show that state-of-the-art SMBHB population models predict $<1%$ probability of detecting a CGW with the current EPTA dataset, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.
Most of compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasi-circular orbits are sub-optimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback. The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
127 - Jaime Salcido 2016
We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a $Lambda$CDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict $sim2$ detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between $zsim2$ and $zsim1$. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger timescale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا