No Arabic abstract
The Prym map assigns to each covering of curves a polarized abelian variety. In the case of unramified cyclic covers of curves of genus two, we show that the Prym map is ramified precisely on the locus of bielliptic covers. The key observation is that we can naturally associate to such a cover an abelian surface with a cyclic polarization, and then the codifferential of the Prym map can be interpreted in terms of multiplication of sections on the abelian surface. Furthermore, we prove that a genus two cyclic cover of degree at least seven is never hyperelliptic.
It is well known that the Prym variety of an etale cyclic covering of a hyperelliptic curve is isogenous to the product of two Jacobians. Moreover, if the degree of the covering is odd or congruent to 2 mod 4, then the canonical isogeny is an isomorphism. We compute the degree of this isogeny in the remaining cases and show that only in the case of coverings of degree 4 it is an isomorphism.
We study the Prym varieties arising from etale cyclic coverings of degree 7 over a curve of genus 2. These Prym varieties are products of Jacobians JY x JY of genus 3 curves Y with polarization type D=(1,1,1,1,1,7). We describe the fibers of the Prym map between the moduli space of such coverings and the moduli space of abelian sixfolds with polarization type D, admitting an automorphism of order 7.
Algebraic curves in Hilbert modular surfaces that are totally geodesic for the Kobayashi metric have very interesting geometric and arithmetic properties, e.g. they are rigid. There are very few methods known to construct such algebraic geodesics that we call Kobayashi curves. We give an explicit way of constructing Kobayashi curves using determinants of derivatives of theta functions. This construction also allows to calculate the Euler characteristics of the Teichmueller curves constructed by McMullen using Prym covers.
In this paper we consider the Prym map for double coverings of curves of genus $g$ ramified at $r>0$ points. That is, the map associating to a double ramified covering its Prym variety. The generic Torelli theorem states that the Prym map is generically injective as soon as the dimension of the space of coverings is less or equal to the dimension of the space of polarized abelian varieties. We prove the generic injectivity of the Prym map in the cases of double coverings of curves with: (a) $g=2$, $r=6$, and (b) $g= 5$, $r=2$. In the first case the proof is constructive and can be extended to the range $rge max {6,frac 23(g+2) }$. For (b) we study the fibre along the locus of the intermediate Jacobians of cubic threefolds to conclude the generic injectivity. This completes the work of Marcucci and Pirola who proved this theorem for all the other cases, except for the bielliptic case $g=1$ (solved later by Marcucci and the first author), and the case $g=3, r=4$ considered previously by Nagaraj and Ramanan, and also by Bardelli, Ciliberto and Verra where the degree of the map is $3$. The paper closes with an appendix by Alessandro Verra with an independent result, the rationality of the moduli space of coverings with $g=2,r=6$, whose proof is self-contained.
We describe the ring of modular forms of degree 2 in characteristic 2 using its relation with curves of genus 2.