Do you want to publish a course? Click here

Modular forms of degree two and curves of genus two in characteristic two

160   0   0.0 ( 0 )
 Added by Gerard van der Geer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We describe the ring of modular forms of degree 2 in characteristic 2 using its relation with curves of genus 2.



rate research

Read More

188 - Gerard van der Geer 2019
We determine the structure of the ring of Siegel modular forms of degree 2 in characteristic 3.
224 - Gerard van der Geer 2021
This is a survey based on the construction of Siegel modular forms of degree 2 and 3 using invariant theory in joint work with Fabien Clery and Carel Faber.
We extend Igusas description of the relation between invariants of binary sextics and Siegel modular forms of degree two to a relation between covariants and vector-valued Siegel modular forms of degree two. We show how this relation can be used to effectively calculate the Fourier expansions of Siegel modular forms of degree two.
223 - Jonas Bergstrom , Carel Faber , 2008
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculated by counting the number of pointed curves of genus 2 with a prescribed number of Weierstrass points over the given finite field. This cohomology is intimately related to vector-valued Siegel modular forms. The corresponding scheme in level 1 was carried out in [FvdG]. Here we extend this to level 2 where new phenomena appear. We determine the contribution of the Eisenstein cohomology together with its S_6-action for the full level 2 structure and on the basis of our computations we make precise conjectures on the endoscopic contribution. We also make a prediction about the existence of a vector-valued analogue of the Saito-Kurokawa lift. Assuming these conjectures that are based on ample numerical evidence, we obtain the traces of the Hecke-operators T(p) for p < 41 on the remaining spaces of `genuine Siegel modular forms. We present a number of examples of 1-dimensional spaces of eigenforms where these traces coincide with the Hecke eigenvalues. We hope that the experts on lifting and on endoscopy will be able to prove our conjectures.
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel modular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G_2 and new congruences of Harder type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا