Do you want to publish a course? Click here

Magnetic field amplification in a laser-irradiated thin foil by return current electrons carrying orbital angular momentum

136   0   0.0 ( 0 )
 Added by Kathleen Weichman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetized high energy density physics offers new opportunities for observing magnetic field-related physics for the first time in the laser-plasma context. We focus on one such phenomenon, which is the ability of a laser-irradiated magnetized plasma to amplify a seed magnetic field. We performed a series of fully kinetic 3D simulations of magnetic field amplification by a picosecond-scale relativistic laser pulse of intensity $4.2times 10^{18}$ W/cm$^2$ incident on a thin foil. We observe axial magnetic field amplification from an initial 0.1 kT seed to 1.5 kT over a volume of several cubic microns, persisting hundreds of femtoseconds longer than the laser pulse duration. The magnetic field amplification is driven by electrons in the return current gaining favorable orbital angular momentum from the seed magnetic field. This mechanism is robust to laser polarization and delivers order-of-magnitude amplification over a range of simulation parameters.



rate research

Read More

Rotational Fresnel drag - or orbital Faraday rotation - in a rotating magnetised plasma is uncovered and studied analytically for Trivelpiece-Gould and Whistler-Helicon waves carrying orbital angular momentum (OAM). Plasma rotation is shown to introduce a non-zero phase shift between OAM-carrying eigenmodes with opposite helicities, similarly to the phase-shift between spin angular momentum eigenmodes associated with the classical Faraday effect in a magnetised plasma at rest. By examining the dispersion relation for these two low-frequency modes in a Brillouin rotating plasma, this Faraday-Fresnel rotation effect is traced back to the combined effects of Doppler shift, centrifugal forces and Coriolis forces. In addition, rotation is further shown to lead to rotation- and azimuthal mode-dependent longitudinal group velocity, therefore predicting the Faraday-Fresnel splitting of the enveloppe of a wave packet containing a superposition of OAM-carrying eigenmodes with opposite helicities.
244 - J.T. Mendonc{c}a , B. Thide , 2009
We study theoretically the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived.
We demonstrate and explain the surprising phenomenon of sign reversal in magnetic field amplification by the laser-driven implosion of a structured target. Relativistically intense laser pulses incident on the outer surface of a microtube target consisting of thin opaque shell surrounding a $mu$m-scale cylindrical void drive an initial ion implosion and later explosion capable of generating and subsequently amplifying strong magnetic fields. While the magnetic field generation is enhanced and spatially smoothed by the application of a kilotesla-level seed field, the sign of the generated field does not always follow the sign of the seed field. One unexpected consequence of the amplification process is a reversal in the sign of the amplified magnetic field when, for example, the target outer cross section is changed from square to circular. Using 2D particle-in-cell simulations, we demonstrate that sign reversal is linked to the stability of the surface magnetic field of opposite sign from the seed which arises at the target inner surface during laser irradiation. The stability of the surface magnetic field and consequently the sign of the final amplified field depends sensitively on the target, laser, and seed magnetic field conditions, which could be leveraged to make laser-driven microtube implosions an attractive platform for the study of magnetic fields in high energy density plasma in regimes where sign reversal either is or is not desired.
We show how strongly correlated ultracold bosonic atoms loaded in specific orbital angular momentum states of arrays of cylindrically symmetric potentials can realize a variety of spin-1/2 models of quantum magnetism. We consider explicitly the dependence of the effective couplings on the geometry of the system and demonstrate that several models of interest related to a general $XYZ$ Heisenberg model with external field can be obtained. Furthermore, we discuss how the relative strength of the effective couplings can be tuned and which phases can be explored by doing so in realistic setups. Finally, we address questions concerning the experimental read-out and implementation and we argue that the stability of the system can be enhanced by using ring-shaped trapping potentials.
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($mathrm{Rm} approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا