No Arabic abstract
Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variations in crowd density within the interested area, and severe occlusion among the crowd. In this paper, we propose a novel Pyramid Density-Aware Attention-based network, abbreviated as PDANet, that leverages the attention, pyramid scale feature and two branch decoder modules for density-aware crowd counting. The PDANet utilizes these modules to extract different scale features, focus on the relevant information, and suppress the misleading ones. We also address the variation of crowdedness levels among different images with an exclusive Density-Aware Decoder (DAD). For this purpose, a classifier evaluates the density level of the input features and then passes them to the corresponding high and low crowded DAD modules. Finally, we generate an overall density map by considering the summation of low and high crowded density maps as spatial attention. Meanwhile, we employ two losses to create a precise density map for the input scene. Extensive evaluations conducted on the challenging benchmark datasets well demonstrate the superior performance of the proposed PDANet in terms of the accuracy of counting and generated density maps over the well-known state of the arts.
Automated crowd counting from images/videos has attracted more attention in recent years because of its wide application in smart cities. But modelling the dense crowd heads is challenging and most of the existing works become less reliable. To obtain the appropriate crowd representation, in this work we proposed SOFA-Net(Second-Order and First-order Attention Network): second-order statistics were extracted to retain selectivity of the channel-wise spatial information for dense heads while first-order statistics, which can enhance the feature discrimination for the heads areas, were used as complementary information. Via a multi-stream architecture, the proposed second/first-order statistics were learned and transformed into attention for robust representation refinement. We evaluated our method on four public datasets and the performance reached state-of-the-art on most of them. Extensive experiments were also conducted to study the components in the proposed SOFA-Net, and the results suggested the high-capability of second/first-order statistics on modelling crowd in challenging scenarios. To the best of our knowledge, we are the first work to explore the second/first-order statistics for crowd counting.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. They typically use the same filters over the whole image or over large image patches. Only then do they estimate local scale to compensate for perspective distortion. This is typically achieved by training an auxiliary classifier to select, for predefined image patches, the best kernel size among a limited set of choices. As such, these methods are not end-to-end trainable and restricted in the scope of context they can leverage. In this paper, we introduce an end-to-end trainable deep architecture that combines features obtained using multiple receptive field sizes and learns the importance of each such feature at each image location. In other words, our approach adaptively encodes the scale of the contextual information required to accurately predict crowd density. This yields an algorithm that outperforms state-of-the-art crowd counting methods, especially when perspective effects are strong.
Occlusions, complex backgrounds, scale variations and non-uniform distributions present great challenges for crowd counting in practical applications. In this paper, we propose a novel method using an attention model to exploit head locations which are the most important cue for crowd counting. The attention model estimates a probability map in which high probabilities indicate locations where heads are likely to be present. The estimated probability map is used to suppress non-head regions in feature maps from several multi-scale feature extraction branches of a convolution neural network for crowd density estimation, which makes our method robust to complex backgrounds, scale variations and non-uniform distributions. In addition, we introduce a relative deviation loss to compensate a commonly used training loss, Euclidean distance, to improve the accuracy of sparse crowd density estimation. Experiments on Shanghai-Tech, UCF_CC_50 and World-Expo10 data sets demonstrate the effectiveness of our method.
Crowd counting is a challenging task due to the issues such as scale variation and perspective variation in real crowd scenes. In this paper, we propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the high-quality density map for crowd counting more accurately. (1) We estimate the residual density maps by multi-scale pyramidal features through cascaded residual density modules. It can improve the quality of density map layer by layer effectively. (2) A novel additional local count loss is presented to refine the accuracy of crowd counting, which reduces the errors of pixel-wise Euclidean loss by restricting the number of people in the local crowd areas. Experiments on two public benchmark datasets show that the proposed method achieves effective improvement compared with the state-of-the-art methods.
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse attention mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.