Do you want to publish a course? Click here

Stellar Characterization of M-dwarfs from the APOGEE Survey: A Calibrator Sample for the M-dwarf Metallicities

70   0   0.0 ( 0 )
 Added by Diogo Souto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spectroscopic determinations of the effective temperatures, surface gravities and metallicities for 21 M-dwarfs observed at high-resolution (R $sim$ 22,500) in the textit{H}-band as part of the SDSS-IV APOGEE survey. The atmospheric parameters and metallicities are derived from spectral syntheses with 1-D LTE plane parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H$_{2}$O and FeH molecular line lists. Our sample range in $T_{rm eff}$ from $sim$ 3200 to 3800K, where eleven stars are in binary systems with a warmer (FGK) primary, while the other 10 M-dwarfs have interferometric radii in the literature. We define an $M_{K_{S}}$--Radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically-derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset towards smaller values, with $Delta$ = -0.01 $pm$ 0.02 $R{star}$/$R_{odot}$. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by $sim$5-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M-dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, shows excellent agreement, with a mean difference of [Fe/H](M-dwarf - FGK primary) = +0.04 $pm$ 0.18 dex, confirming the APOGEE metallicity scale derived here for M-dwarfs.



rate research

Read More

101 - Jiadong Li , Chao Liu , Bo Zhang 2020
M dwarf stars are the most common stars in the Galaxy, dominating the population of the Galaxy by numbers at faint magnitudes. Precise and accurate stellar parameters for M dwarfs are of crucial importance for many studies. However, the atmospheric parameters of M dwarf stars are difficult to be determined. In this paper, we present a catalog of the spectroscopic stellar parameters ($T_{eff}$ and [M/H]) of $sim$ 300,000 M dwarf stars observed by both LAMOST and Gaia using Stellar Label Machine (SLAM). We train a SLAM model using LAMOST spectra with APOGEE Data Release 16 (DR16) labels with $2800 lt T_{eff} lt 4500$K and $-2 lt [M/H] lt 0.5$ dex. The SLAM $T_{eff}$ is in agreement to within $sim 50$K compared to the previous study determined by APOGEE observation, and SLAM [M/H] agree within 0.12 dex compared to the APOGEE observation. We also set up a SLAM model trained by BT-Settl atmospheric model, with random uncertainties (in cross-validation) to 60K and agree within $sim 90$K compared to previous study.
Stellar activity poses one of the main obstacles for the detection and characterisation of small exoplanets around cool stars, as it can induce radial velocity (RV) signals that can hide or mimic the presence of planetary companions. Several indicators of stellar activity are routinely used to identify activity-related signals in RVs, but not all indicators trace exactly the same activity effects, nor are any of them always effective in all stars. We evaluate the performance of a set of spectroscopic activity indicators for M dwarf stars with different masses and activity levels with the aim of finding a relation between the indicators and stellar properties. In a sample of 98 M dwarfs observed with CARMENES, we analyse the temporal behaviour of RVs and nine spectroscopic activity indicators: cross-correlation function (CCF) full-width-at-half-maximum (FWHM), contrast, and bisector inverse slope (BIS), chromatic index (CRX), differential line width (dLW), and indices of the chromospheric lines H$alpha$ and calcium infrared triplet. A total of 56 stars of the initial sample show periodic signals related to activity in at least one of these ten parameters. RV is the parameter for which most of the targets show an activity-related signal. CRX and BIS are effective activity tracers for the most active stars in the sample, especially stars with a relatively high mass, while for less active stars, chromospheric lines perform best. FWHM and dLW show a similar behaviour in all mass and activity regimes, with the highest number of activity detections in the low-mass, high-activity regime. Most of the targets for which we cannot identify any activity-related signals are stars at the low-mass end of the sample. These low-mass stars also show the lowest RV scatter, which indicates that ultracool M dwarfs could be better candidates for planet searches than earlier types, which show larger RV jitter.
Binary stars make up a significant portion of all stellar systems. Consequently, an understanding of the bulk properties of binary stars is necessary for a full picture of star formation. Binary surveys indicate that both multiplicity fraction and typical orbital separation increase as functions of primary mass. Correlations with higher order architectural parameters such as mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. At least 11 of these SB2s are known, having been previously identified by Deshapnde et al, and/or El Badry et al. We are able to extract radial velocities (RVs) for the components of 36 of these systems from their CCFs. With these RVs, we measure mass ratios for 29 SB2s and 5 SB3s. We use Bayesian techniques to fit maximum likelihood (but still preliminary) orbits for 4 SB2s with 8 or more distinct APOGEE observations. The observed (but incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov tests and probabilities of 18.3% and 18.7%, demonstrating that the mass ratio distribution of our sample is consistent with those measured by Pourbaix et al. and Fernandez et al., respectively.
M dwarfs with masses 0.1 <= M/M_sol <= 0.3 are under increasing scrutiny because these fully convective stars pose interesting astrophysical questions regarding their magnetic activity and angular momentum history. They also afford the most accessible near-future opportunity to study the atmospheres of terrestrial planets. Because they are intrinsically low in luminosity, the identification of the nearest examples of these M dwarfs is essential for progress. We present the volume-complete, all-sky list of 512 M dwarfs with masses 0.1 <= M/M_sol <= 0.3 and with trigonometric distances placing them within 15 pc (parallax >= 66.67 mas) from which we have created a sample of 413 M dwarfs for spectroscopic study. We present the mass function for these 512 M dwarfs, which increases with decreasing stellar mass in linear mass space, but is flat in logarithmic mass space. As part of this sample, we present new VRI photometry for 17 targets, measured as a result of the RECONS groups long-term work at the CTIO/SMARTS 0.9m telescope. We also note the details of targets that are known to be members of multiple systems and find a preliminary multiplicity rate of 21 +/- 2% for the primary M dwarfs in our sample, when considering known stellar and brown dwarf companions at all separations from their primaries. We further find that 43 +/- 2% of all M dwarfs with masses 0.1 <= M/M_sol <= 0.3 are found in multiple systems with primary stars of all masses within 15 pc.
M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, attracting the attention of many ongoing surveys. As a by-product of these surveys, new multiple stellar systems are also found. This is the case also for the CARMENES survey, from which nine new SB2 systems have already been announced. Throughout the five years of the survey, the accumulation of new observations has resulted in the detection of several new multiple stellar systems with long periods and low radial-velocity amplitudes. Here, we newly characterise the spectroscopic orbits and constrain the masses of eight systems and update the properties of a system that we reported earlier. We derive the radial velocities of the stars using two-dimensional cross correlation techniques and template matching. The measurements are modelled to determine the orbital parameters of the systems. We combine CARMENES spectroscopic observations with archival high-resolution spectra from other instruments to increase the time-span of the observations and improve our analysis. When available, we also added archival photometric, astrometric, and adaptive optics imaging data to constrain the rotation periods and absolute masses of the components. We determine the spectroscopic orbits of nine multiple systems, eight of which are presented for the first time. The sample is composed of five SB1s, two SB2s, and two ST3s. The companions of two of the single-line binaries, GJ 3626 and GJ 912, have minimum masses below the stellar boundary and, thus, could be brown dwarfs. We find a new white dwarf in a close binary orbit around the M star GJ 207.1. From a global fit to radial velocities and astrometric measurements, we are able to determine the absolute masses of the components of GJ 282C, which is one of the youngest systems with measured dynamical masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا