Do you want to publish a course? Click here

Raman Response and Transport Properties of One-Dimensional van der Waals Tellurium Nanowires

246   0   0.0 ( 0 )
 Added by Pai-Ying Liao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tellurium can form nanowires of helical atomic chains. Given their unique one-dimensional van der Waals structure, these nanowires are expected to show remarkably different physical and electronic properties than bulk tellurium. Here we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With the approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5*10^8 A cm-2, which exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transistors that have a diameter of only 2 nm.



rate research

Read More

88 - Ya Feng , Henan Li , Taiki Inoue 2020
The synthesis of one-dimensional van der Waals heterostructures was realized recently, which opens up new possibilities for prospective applications in electronics and optoelectronics. The even reduced dimension will enable novel properties and further miniaturization beyond the capabilities of its two-dimensional counterparts have revealed. The natural doping results in p-type electrical characteristics for semiconducting single-walled carbon nanotubes, while n-type for molybdenum disulfide with conventional noble metal contacts. Therefore, we demonstrate here a one-dimensional heterostructure nanotube of 11-nm-wide, with the coaxial assembly of semiconducting single-walled carbon nanotube, insulating boron nitride nanotube, and semiconducting molybdenum disulfide nanotube which induces a radial semiconductor-insulator-semiconductor heterojunction. When opposite potential polarity was applied on semiconducting single-walled carbon nanotube and molybdenum disulfide nanotube, respectively, the rectifying effect was materialized.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
We present vibrational properties of Franckeite, which is a naturally occurring van der Waals heterostructure consisting of two different semiconducting layers. Franckeite is a complex layered crystal composed of alternating SnS$_2$ like pseudohexagonal and PbS-like pseudotetragonal layers stacked on top of each other, providing a unique platform to study vibrational properties and thermal transport across layers with mass density and phonon mismatches. By using micro-Raman spectroscopy and first-principles Raman simulations, we found that the PbS-like pseudotetragonal structure is mostly composed of Pb$_3$SbS$_4$. We also discovered several low-frequency Raman modes that originate from the intralayer vibrations of the pseudotetragonal layer. Using density functional theory, we determined all vibrational patterns of Franckeite, whose signatures are observed in the Raman spectrum. By studying temperature dependent Raman spectroscopy (300 K - 500 K), we have found different temperature coefficients for both pseudotetragonal and pseudohexagonal layers. We believe that our study will help understand the vibration modes of its complex heterostructure and the thermal properties at the nanoscale.
We report polymer composite films containing fillers comprised of quasi-one-dimensional (1D) van der Waals materials, specifically transition metal trichalcogenides containing 1D structural motifs that enable their exfoliation into bundles of atomic threads. These nanostructures are characterized by extremely large aspect ratios of up to 10^6. The polymer composites with low loadings of quasi-1D TaSe3 fillers (below 3 vol. %) revealed excellent electromagnetic interference shielding in the X-band GHz and EHF sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically-conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, electrically insulating and inexpensive.
Different atomistic registry between the layers forming the inner and outer nanotubes can form one-dimensional (1D) van der Waals (vdW) moire superlattices. Unlike the two-dimensional (2D) vdW moire superlattices, effects of 1D vdW moire superlattices on electronic and optical properties in 1D moire superlattices are not well understood, and they are often neglected. In this Perspective, we summarize new experimental observations and theoretical perspectives related to interlayer interactions in double-walled carbon nanotubes (DWNTs), a representative 1D vdW moire system. Our discussion will focus on new optical features emerging from the interlayer electronic interactions in DWNTs. Exciting correlated physics and exotic phases of matter are anticipated to exist in 1D vdW moire superlattices, analogous with those discovered in the 2D vdW moire superlattices. We further discuss the future directions in probing and uncovering interesting physical phenomena in 1D moire superlattices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا