Do you want to publish a course? Click here

SOFIA/FORCAST Galactic Center Legacy Survey: Overview

79   0   0.0 ( 0 )
 Added by Mathew Hankins
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic Center contains some of the most extreme conditions for star formation in our Galaxy as well as many other phenomena that are unique to this region. Given our relative proximity to the Galactic Center, we are able to study details of physical processes to a level that is simply not yet possible for more distant galaxies, yielding an otherwise inaccessible view of the nuclear region of a galaxy. We recently carried out a targeted imaging survey of mid-infrared bright portions of the Galactic Center at 25 and 37 $mu$m using the FORCAST instrument on SOFIA. This survey was one of the inaugural Legacy Programs from SOFIA cycle 7, observing a total area of 403 arcmin$^2$ (2180 pc$^2$), including the Sgr A, B, and C complexes. Here we present an overview of the survey strategy, observations, and data reduction as an accompaniment to the initial public release of the survey data. We discuss interesting regions and features within the data including extended features near the circumnuclear disk, structures in the Arched Filaments and Sickle H II regions, and signs of embedded star formation in Sgr B2 and Sgr C. We also feature a handful of less well studied mid-infrared sources located between Sgr A and Sgr C that could be sites of relatively isolated star formation activity. Last, we discuss plans for subsequent publications and future data releases from the survey.



rate research

Read More

147 - Q. D. Wang , H. Dong , A. Cotera 2009
We have recently carried out the first wide-field hydrogen Paschen-alpha line imaging survey of the Galactic Center (GC), using the NICMOS instrument aboard the Hubble Space Telescope. The survey maps out a region of 2253 pc^2 around the central supermassive black hole (Sgr A*) in the 1.87 and 1.90 Micron narrow bands with a spatial resolution of 0.01 pc at a distance of 8 kpc. Here we present an overview of the observations, data reduction, preliminary results, and potential scientific implications, as well as a description of the rationale and design of the survey. We have produced mosaic maps of the Paschen-alpha line and continuum emission, giving an unprecedentedly high resolution and high sensitivity panoramic view of stars and photo-ionized gas in the nuclear environment of the Galaxy. We detect a significant number of previously undetected stars with Paschen-alpha in emission. They are most likely massive stars with strong winds, as confirmed by our initial follow-up spectroscopic observations. About half of the newly detected massive stars are found outside the known clusters (Arches, Quintuplet, and Central). Many previously known diffuse thermal features are now resolved into arrays of intriguingly fine linear filaments indicating a profound role of magnetic fields in sculpting the gas. The bright spiral-like Paschen-alpha emission around Sgr A* is seen to be well confined within the known dusty torus. In the directions roughly perpendicular to it, we further detect faint, diffuse Paschen-alpha emission features, which, like earlier radio images, suggest an outflow from the structure. In addition, we detect various compact Paschen-alpha nebulae, probably tracing the accretion and/or ejection of stars at various evolutionary stages.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed thirteen science flights on SOFIA. In this paper we describe the design, operation and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near diffraction-limited images for lambda > 30 microns allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.
We present 75x75 size maps of M82 at 6.4 micron, 6.6 micron, 7.7 micron, 31.5 micron, and 37.1 micron with a resolution of ~4 that we have obtained with the mid-IR camera FORCAST on SOFIA. We find strong emission from the inner 60 (~1kpc) along the major axis, with the main peak 5 west-southwest of the nucleus and a secondary peak 4 east-northeast of the nucleus. The detailed morphology of the emission differs among the bands, which is likely due to different dust components dominating the continuum emission at short mid-IR wavelengths and long mid-IR wavelengths. We include Spitzer-IRS and Herschel/PACS 70 micron data to fit spectral energy distribution templates at both emission peaks. The best fitting templates have extinctions of A_V = 18 and A_V = 9 toward the main and secondary emission peak and we estimated a color temperature of 68 K at both peaks from the 31 micron and 37 micron measurement. At the emission peaks the estimated dust masses are on the order of 10^{4} M_sun.
77 - F. Civano , S. Marchesi 2016
The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg$^2$ of the COSMOS field with an effective exposure of $simeq$160 ks over the central 1.5 deg$^2$ and of $simeq$80 ks in the remaining area. The survey is the combination of 56 new observations, obtained as an X-ray Visionary Project, with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2$times 10^{-5}$. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft and hard band). The limiting depths are 2.2 $times$ 10$^{-16}$, 1.5 $times$ 10$^{-15}$ and 8.9$times$ 10$^{-16}$ ${rm erg~cm}^{-2}~{rm s}^{-1}$ in the 0.5-2, 2-10 and 0.5-10 keV bands, respectively. The observed fraction of obscured AGN with column density $> 10^{22}$ cm$^{-2}$ from the hardness ratio (HR) is $sim$50$^{+17}_{-16}$%. Given the large sample, we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5-10%. For the first time, we compute number counts for obscured (HR$>$-0.2) and unobscured (HR$<$-0.2) sources and find significant differences between the two populations in the soft band. Due to the un-precedent large exposure, COSMOS-Legacy area is 3 times larger than surveys at similar depth and its depth is 3 times fainter than surveys covering similar area. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا